Physically Based and Data-Driven Models for Landslide Susceptibility Assessment: Principles, Applications, and Challenges

Guardado en:
Bibliografiske detaljer
Udgivet i:Remote Sensing vol. 17, no. 13 (2025), p. 2280-2318
Hovedforfatter: Ye Chenzuo
Andre forfattere: Wu, Hao, Oguchi Takashi, Tang, Yuting, Pei Xiangjun, Wu, Yufeng
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3229156903
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17132280  |2 doi 
035 |a 3229156903 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Ye Chenzuo  |u Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0882, Japan; yechenzuo@csis.u-tokyo.ac.jp (C.Y.); oguchi@csis.u-tokyo.ac.jp (T.O.); tang@ms.k.u-tokyo.ac.jp (Y.T.); 
245 1 |a Physically Based and Data-Driven Models for Landslide Susceptibility Assessment: Principles, Applications, and Challenges 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Susceptibility assessment is a crucial task for mitigating landslide hazards. It includes displacement prediction, stability analysis, and location prediction for individual hillslopes or regional mountainous areas. Physically based models can assess landslide susceptibility with limited datasets by inputting physical parameters, albeit with some uncertainties. In contrast, data-driven models, primarily developed using machine learning and statistical algorithms, often provide acceptable predictive accuracy in assessing landslide susceptibility. They generally serve as practical tools for prediction but lack transparency and scientific interpretability. This review critically analyzes the strengths, limitations, and application scenarios of each model type, with a focus on recent advancements, practical applications, and challenges encountered. Furthermore, potential integration strategies are discussed to address the limitations of each approach, including hybrid models that combine the interpretability of physically based models with the predictive power of data-driven models. Finally, we suggest future research directions to improve landslide susceptibility assessments, such as enhancing model interpretability, incorporating real-time monitoring data, enhancing cross-regional transferability, and leveraging advancements in remote sensing, spatial data analytics, and multi-source data fusion. 
653 |a Deep learning 
653 |a Trends 
653 |a Susceptibility 
653 |a Landslides 
653 |a Remote sensing 
653 |a Mountainous areas 
653 |a Hydrology 
653 |a Hazard assessment 
653 |a Data integration 
653 |a Machine learning 
653 |a Mountain regions 
653 |a Stability analysis 
653 |a Geology 
653 |a Data analysis 
653 |a Hazard mitigation 
653 |a Spatial data 
653 |a Landslides & mudslides 
653 |a Failure analysis 
653 |a Predictions 
653 |a Neural networks 
653 |a Regions 
653 |a Geological hazards 
653 |a Earthquakes 
653 |a Disasters 
653 |a Physical properties 
653 |a Algorithms 
653 |a Real time 
653 |a Multisensor fusion 
700 1 |a Wu, Hao  |u School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China 
700 1 |a Oguchi Takashi  |u Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0882, Japan; yechenzuo@csis.u-tokyo.ac.jp (C.Y.); oguchi@csis.u-tokyo.ac.jp (T.O.); tang@ms.k.u-tokyo.ac.jp (Y.T.); 
700 1 |a Tang, Yuting  |u Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0882, Japan; yechenzuo@csis.u-tokyo.ac.jp (C.Y.); oguchi@csis.u-tokyo.ac.jp (T.O.); tang@ms.k.u-tokyo.ac.jp (Y.T.); 
700 1 |a Pei Xiangjun  |u School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China 
700 1 |a Wu, Yufeng  |u Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-0882, Japan; yechenzuo@csis.u-tokyo.ac.jp (C.Y.); oguchi@csis.u-tokyo.ac.jp (T.O.); tang@ms.k.u-tokyo.ac.jp (Y.T.); 
773 0 |t Remote Sensing  |g vol. 17, no. 13 (2025), p. 2280-2318 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229156903/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229156903/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229156903/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch