Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network

Na minha lista:
Detalhes bibliográficos
Publicado no:Remote Sensing vol. 17, no. 13 (2025), p. 2150-2173
Autor principal: Xu, Hao
Outros Autores: Wang, Li, Bao, Shu, Zhang, Qin, Li, Xinrui
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3229157033
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17132150  |2 doi 
035 |a 3229157033 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Xu, Hao  |u School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; xuhao@chd.edu.cn (H.X.); baos613@chd.edu.cn (B.S.); dczhangq@chd.edu.cn (Q.Z.); lixinrui_98@chd.edu.cn (X.L.) 
245 1 |a Automatic Detection of Landslide Surface Cracks from UAV Images Using Improved U-Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Surface cracks are key indicators of landslide deformation, crucial for early landslide identification and deformation pattern analysis. However, due to the complex terrain and landslide extent, manual surveys or traditional digital image processing often face challenges with efficiency, precision, and interference susceptibility in detecting these cracks. Therefore, this study proposes a comprehensive automated pipeline to enhance the efficiency and accuracy of landslide surface crack detection. First, high-resolution images of landslide areas are collected using unmanned aerial vehicles (UAVs) to generate a digital orthophoto map (DOM). Subsequently, building upon the U-Net architecture, an improved encoder–decoder semantic segmentation network (IEDSSNet) was proposed to segment surface cracks from the images with complex backgrounds. The model enhances the extraction of crack features by integrating residual blocks and attention mechanisms within the encoder. Additionally, it incorporates multi-scale skip connections and channel-wise cross attention modules in the decoder to improve feature reconstruction capabilities. Finally, post-processing techniques such as morphological operations and dimension measurements were applied to crack masks to generate crack inventories. The proposed method was validated using data from the Heifangtai loess landslide in Gansu Province. Results demonstrate its superiority over current state-of-the-art semantic segmentation networks and open-source crack detection networks, achieving F1 scores and IOU of 82.11% and 69.65%, respectively—representing improvements of 3.31% and 4.63% over the baseline U-Net model. Furthermore, it maintained optimal performance with demonstrated generalization capability under varying illumination conditions. In this area, a total of 1658 surface cracks were detected and cataloged, achieving an accuracy of 85.22%. The method proposed in this study demonstrates strong performance in detecting surface cracks in landslide areas, providing essential data for landslide monitoring, early warning systems, and mitigation strategies. 
653 |a Digital mapping 
653 |a Digital imaging 
653 |a Warning systems 
653 |a Accuracy 
653 |a Image resolution 
653 |a Photogrammetry 
653 |a Early warning systems 
653 |a Pattern recognition 
653 |a Landslides 
653 |a Unmanned aerial vehicles 
653 |a Loess 
653 |a Image processing 
653 |a Deformation analysis 
653 |a Semantic segmentation 
653 |a Automation 
653 |a Cracks 
653 |a Coders 
653 |a Landslides & mudslides 
653 |a Image reconstruction 
653 |a Pattern analysis 
653 |a Image segmentation 
653 |a Aerial surveys 
653 |a Earthquakes 
653 |a Surface cracks 
653 |a Morphology 
653 |a Semantics 
700 1 |a Wang, Li  |u School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; xuhao@chd.edu.cn (H.X.); baos613@chd.edu.cn (B.S.); dczhangq@chd.edu.cn (Q.Z.); lixinrui_98@chd.edu.cn (X.L.) 
700 1 |a Bao, Shu  |u School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; xuhao@chd.edu.cn (H.X.); baos613@chd.edu.cn (B.S.); dczhangq@chd.edu.cn (Q.Z.); lixinrui_98@chd.edu.cn (X.L.) 
700 1 |a Zhang, Qin  |u School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; xuhao@chd.edu.cn (H.X.); baos613@chd.edu.cn (B.S.); dczhangq@chd.edu.cn (Q.Z.); lixinrui_98@chd.edu.cn (X.L.) 
700 1 |a Li, Xinrui  |u School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China; xuhao@chd.edu.cn (H.X.); baos613@chd.edu.cn (B.S.); dczhangq@chd.edu.cn (Q.Z.); lixinrui_98@chd.edu.cn (X.L.) 
773 0 |t Remote Sensing  |g vol. 17, no. 13 (2025), p. 2150-2173 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229157033/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229157033/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229157033/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch