Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: A Case Study

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Sensors vol. 25, no. 13 (2025), p. 4070-4093
المؤلف الرئيسي: İşler Buket
مؤلفون آخرون: Kaya, Şükrü Mustafa, Kılıç, Fahreddin Raşit
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3229160015
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25134070  |2 doi 
035 |a 3229160015 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a İşler Buket  |u Department of Software Engineering, Istanbul Topkapi University, Istanbul 34087, Türkiye 
245 1 |a Fog-Enabled Machine Learning Approaches for Weather Prediction in IoT Systems: A Case Study 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Temperature forecasting is critical for public safety, environmental risk management, and energy conservation. However, reliable forecasting becomes challenging in regions where governmental institutions lack adequate measurement infrastructure. To address this limitation, the present study aims to improve temperature forecasting by collecting temperature, pressure, and humidity data through IoT sensor networks. The study further seeks to identify the most effective method for the real-time processing of large-scale datasets generated by sensor measurements and to ensure data reliability. The collected data were pre-processed using Discrete Wavelet Transform (DWT) to extract essential features and reduce noise. Subsequently, three wavelet-processed deep-learning models were employed: Wavelet-processed Artificial Neural Networks (W-ANN), Wavelet-processed Long Short-Term Memory Networks (W-LSTM), and Wavelet-processed Bidirectional Long Short-Term Memory Networks (W-BiLSTM). Among these, the W-BiLSTM model yielded the highest performance, achieving a test accuracy of 97% and a Mean Absolute Percentage Error (MAPE) of 2%. It significantly outperformed the W-LSTM and W-ANN models in predictive accuracy. Forecasts were validated using data obtained from the Turkish State Meteorological Service (TSMS), yielding a 94% concordance, thereby confirming the robustness of the proposed approach. The findings demonstrate that the W-BiLSTM-based model enables reliable temperature forecasting, even in regions with insufficient governmental measurement infrastructure. Accordingly, this approach holds considerable potential for supporting data-driven decision-making in environmental risk management and energy conservation. 
651 4 |a Turkey 
651 4 |a Istanbul Turkey 
653 |a Big Data 
653 |a Machine learning 
653 |a Accuracy 
653 |a Precipitation 
653 |a Humidity 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Emergency preparedness 
653 |a Decision making 
653 |a Neural networks 
653 |a Sensors 
653 |a Data processing 
653 |a Air pollution 
653 |a Energy efficiency 
653 |a Data analysis 
653 |a Data collection 
653 |a Weather forecasting 
653 |a Batch processing 
653 |a Cloud computing 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Residential buildings 
653 |a Resource management 
700 1 |a Kaya, Şükrü Mustafa  |u Department of Computer Technologies, Istanbul Aydin University, Istanbul 34295, Türkiye; mustafakaya@aydin.edu.tr 
700 1 |a Kılıç, Fahreddin Raşit  |u Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya 42250, Türkiye; frkilic@ktun.edu.tr 
773 0 |t Sensors  |g vol. 25, no. 13 (2025), p. 4070-4093 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229160015/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3229160015/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229160015/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch