A fair dividend approach for aggregating wearable sensor data to improve electronic health records

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 7 (Jul 2025), p. e0327942
Autor principal: Alanazi, Turki M
Altres autors: Alduaiji, Noha, Lhioui, Chahira, Hamdaoui, Rim, Asklany, Somia, Hamdi, Monia, Elrashidi, Ali, Abbas, Ghulam
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3229482755
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0327942  |2 doi 
035 |a 3229482755 
045 2 |b d20250701  |b d20250731 
084 |a 174835  |2 nlm 
100 1 |a Alanazi, Turki M 
245 1 |a A fair dividend approach for aggregating wearable sensor data to improve electronic health records 
260 |b Public Library of Science  |c Jul 2025 
513 |a Journal Article 
520 3 |a Wearable sensor (WS) technology in healthcare is essential because it makes medical diagnosis easier by continuously monitoring important changes in an individual’s body. This technology is used to detect aberrant occurrences and predict medical dangers. A central connecting unit is used to stream and send accurate observations to improve the quality of medical diagnosis. In this paper, we present a Fair Dividend Interrupt Method (FDIM), a new way to arrange and improve the efficiency of combining WS inputs. This approach employs federated learning to prioritize interruptions based on their importance and WS criteria. This leads to well-structured streaming periods across numerous connecting devices, guaranteeing continuous sequences. The sequence determination uses balanced linear scheduling, optimizing the structure of sensing operations and increasing WS input availability when interruptions from multiple sensors, thereby boosting operating efficiency. The proposed approach outperforms baseline methods in access time, computational complexity, data utilization, processing time, aggregation ratio, and error rate by 10.18%, 5.19%, 10.57%, 8.48%, and 10.42%, respectively. Due to these developments, FDIM is now a highly efficient, scalable solution for wearable healthcare systems that allows accurate medical decision-making. 
653 |a Accuracy 
653 |a User behavior 
653 |a Trends 
653 |a Communication 
653 |a Optimization techniques 
653 |a Health care 
653 |a Electrocardiography 
653 |a Wearable technology 
653 |a Data processing 
653 |a Diagnosis 
653 |a Access time 
653 |a Monitoring systems 
653 |a Energy consumption 
653 |a Electronic medical records 
653 |a Electronic health records 
653 |a Internet of Things 
653 |a Patients 
653 |a Public safety 
653 |a Sensors 
653 |a Energy efficiency 
653 |a Algorithms 
653 |a Crime prevention 
653 |a Federated learning 
653 |a Data transmission 
653 |a Decision making 
653 |a Social 
700 1 |a Alduaiji, Noha 
700 1 |a Lhioui, Chahira 
700 1 |a Hamdaoui, Rim 
700 1 |a Asklany, Somia 
700 1 |a Hamdi, Monia 
700 1 |a Elrashidi, Ali 
700 1 |a Abbas, Ghulam 
773 0 |t PLoS One  |g vol. 20, no. 7 (Jul 2025), p. e0327942 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229482755/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3229482755/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229482755/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch