Real-time measurement of spatial distance to external breakage hazards of transmission pole tower based on monocular vision

Shranjeno v:
Bibliografske podrobnosti
izdano v:PLoS One vol. 20, no. 7 (Jul 2025), p. e0326254
Glavni avtor: Liao, Ruchao
Drugi avtorji: Li, Duanjiao, Li, Changyu, Sun, Wenxing, Liu, Gao, Wang, Cong
Izdano:
Public Library of Science
Teme:
Online dostop:Citation/Abstract
Full Text
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 3229482848
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0326254  |2 doi 
035 |a 3229482848 
045 2 |b d20250701  |b d20250731 
084 |a 174835  |2 nlm 
100 1 |a Liao, Ruchao 
245 1 |a Real-time measurement of spatial distance to external breakage hazards of transmission pole tower based on monocular vision 
260 |b Public Library of Science  |c Jul 2025 
513 |a Journal Article 
520 3 |a As the global economy continues to expand and energy demand increases, the size of power transmission networks continues to grow, making the safety monitoring of transmission towers increasingly important. To address the accuracy deficiencies of existing technologies in predicting external damage risks to transmission towers, this study proposes a real-time spatial distance measurement method based on monocular vision. The method first uses a Transformer network to optimize the distribution of pseudo point clouds and designs a 3D monocular vision distance measurement method based on LiDAR. Through validation on the KITTI 3D object detection dataset, the method achieved an average detection accuracy increase of 10.71% in easy scenarios and 2.18% to 7.85% in difficult scenarios compared to other methods. In addition, this study introduced a foreground target depth optimization method based on a 2D target detector and geometric constraints, which further improved the accuracy of 3D target detection. The innovation of the study is the optimization of the pseudo point cloud distribution using the transformer network, which effectively captured the global dependencies and improved the global consistency and local detail accuracy of the pseudo point clouds. The method proposed in the study provides a new approach for intelligent detection and recognition of power transmission lines, and provides a positive impetus for the fields of power engineering and computer vision. 
653 |a Measurement methods 
653 |a Geometric constraints 
653 |a Distance measurement 
653 |a Accuracy 
653 |a Deep learning 
653 |a Blackouts 
653 |a Electricity distribution 
653 |a Cloud distribution 
653 |a Container ships 
653 |a Lidar 
653 |a Robots 
653 |a Transmission lines 
653 |a Unmanned aerial vehicles 
653 |a Computer vision 
653 |a Monocular vision 
653 |a Automation 
653 |a Localization 
653 |a Energy demand 
653 |a Energy consumption 
653 |a Time measurement 
653 |a Efficiency 
653 |a Transmission towers 
653 |a Vegetation 
653 |a Lasers 
653 |a Global economy 
653 |a Neural networks 
653 |a Optimization 
653 |a Three dimensional models 
653 |a Target detection 
653 |a Power lines 
653 |a Lidar measurements 
653 |a Algorithms 
653 |a Object recognition 
653 |a Real time 
653 |a Transformers 
653 |a Environmental 
700 1 |a Li, Duanjiao 
700 1 |a Li, Changyu 
700 1 |a Sun, Wenxing 
700 1 |a Liu, Gao 
700 1 |a Wang, Cong 
773 0 |t PLoS One  |g vol. 20, no. 7 (Jul 2025), p. e0326254 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229482848/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3229482848/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229482848/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch