Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization

Guardado en:
Detalles Bibliográficos
Publicado en:Computers, Materials, & Continua vol. 84, no. 2 (2025), p. 3371-3392
Autor principal: Lyu, Chenxi
Otros Autores: Chen, Dong, Xiong, Qiancheng, Chen, Yuzhong, Weng, Qian, Chen, Zhenyi
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229497756
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.065153  |2 doi 
035 |a 3229497756 
045 2 |b d20250101  |b d20251231 
100 1 |a Lyu, Chenxi 
245 1 |a Pathfinder: Deep Reinforcement Learning-Based Scheduling for Multi-Robot Systems in Smart Factories with Mass Customization 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The rapid advancement of Industry 4.0 has revolutionized manufacturing, shifting production from centralized control to decentralized, intelligent systems. Smart factories are now expected to achieve high adaptability and resource efficiency, particularly in mass customization scenarios where production schedules must accommodate dynamic and personalized demands. To address the challenges of dynamic task allocation, uncertainty, and real-time decision-making, this paper proposes Pathfinder, a deep reinforcement learning-based scheduling framework. Pathfinder models scheduling data through three key matrices: execution time (the time required for a job to complete), completion time (the actual time at which a job is finished), and efficiency (the performance of executing a single job). By leveraging neural networks, Pathfinder extracts essential features from these matrices, enabling intelligent decision-making in dynamic production environments. Unlike traditional approaches with fixed scheduling rules, Pathfinder dynamically selects from ten diverse scheduling rules, optimizing decisions based on real-time environmental conditions. To further enhance scheduling efficiency, a specialized reward function is designed to support dynamic task allocation and real-time adjustments. This function helps Pathfinder continuously refine its scheduling strategy, improving machine utilization and minimizing job completion times. Through reinforcement learning, Pathfinder adapts to evolving production demands, ensuring robust performance in real-world applications. Experimental results demonstrate that Pathfinder outperforms traditional scheduling approaches, offering improved coordination and efficiency in smart factories. By integrating deep reinforcement learning, adaptable scheduling strategies, and an innovative reward function, Pathfinder provides an effective solution to the growing challenges of multi-robot job scheduling in mass customization environments. 
653 |a Scheduling 
653 |a Factories 
653 |a Task scheduling 
653 |a Deep learning 
653 |a Neural networks 
653 |a Decision making 
653 |a Production scheduling 
653 |a Industry 4.0 
653 |a Efficiency 
653 |a Industrial applications 
653 |a Multiple robots 
653 |a Customization 
653 |a Real time 
653 |a Completion time 
653 |a Resource efficiency 
653 |a Environmental conditions 
653 |a Economic 
700 1 |a Chen, Dong 
700 1 |a Xiong, Qiancheng 
700 1 |a Chen, Yuzhong 
700 1 |a Weng, Qian 
700 1 |a Chen, Zhenyi 
773 0 |t Computers, Materials, & Continua  |g vol. 84, no. 2 (2025), p. 3371-3392 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229497756/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229497756/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch