A Computational Model for Enhanced Mammographic Image Pre-Processing and Segmentation

Guardado en:
Detalles Bibliográficos
Publicado en:Computer Modeling in Engineering & Sciences vol. 143, no. 3 (2025), p. 3091-3133
Autor principal: Mehdar, Khlood
Otros Autores: Soomro, Toufique, Ahmed, Ali, Ubaid, Faisal, Muhammad Irfan, Elshafie, Sabah, Mashraqi, Aisha, Asiri, Abdullah, Hussien, Nagla, Halawani, Hanan
Publicado:
Tech Science Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229497786
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.065471  |2 doi 
035 |a 3229497786 
045 2 |b d20250101  |b d20251231 
100 1 |a Mehdar, Khlood 
245 1 |a A Computational Model for Enhanced Mammographic Image Pre-Processing and Segmentation 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Breast cancer remains one of the most pressing global health concerns, and early detection plays a crucial role in improving survival rates. Integrating digital mammography with computational techniques and advanced image processing has significantly enhanced the ability to identify abnormalities. However, existing methodologies face persistent challenges, including low image contrast, noise interference, and inaccuracies in segmenting regions of interest. To address these limitations, this study introduces a novel computational framework for analyzing mammographic images, evaluated using the Mammographic Image Analysis Society (MIAS) dataset comprising 322 samples. The proposed methodology follows a structured three-stage approach. Initially, mammographic scans are classified using the Breast Imaging Reporting and Data System (BI-RADS), ensuring systematic and standardized image analysis. Next, the pectoral muscle, which can interfere with accurate segmentation, is effectively removed to refine the region of interest (ROI). The final stage involves an advanced image pre-processing module utilizing Independent Component Analysis (ICA) to enhance contrast, suppress noise, and improve image clarity. Following these enhancements, a robust segmentation technique is employed to delineated abnormal regions. Experimental results validate the efficiency of the proposed framework, demonstrating a significant improvement in the Effective Measure of Enhancement (EME) and a 3 dB increase in Peak Signal-to-Noise Ratio (PSNR), indicating superior image quality. The model also achieves an accuracy of approximately 97%, surpassing contemporary techniques evaluated on the MIAS dataset. Furthermore, its ability to process mammograms across all BI-RADS categories highlights its adaptability and reliability for clinical applications. This study presents an advanced and dependable computational framework for mammographic image analysis, effectively addressing critical challenges in noise reduction, contrast enhancement, and segmentation precision. The proposed approach lays the groundwork for seamless integration into computer-aided diagnostic (CAD) systems, with the potential to significantly enhance early breast cancer detection and contribute to improved patient outcomes. 
653 |a Digital imaging 
653 |a Abnormalities 
653 |a Datasets 
653 |a Image analysis 
653 |a Image segmentation 
653 |a Independent component analysis 
653 |a Mammography 
653 |a Public health 
653 |a Noise reduction 
653 |a Medical imaging 
653 |a Data systems 
653 |a Image quality 
653 |a Image processing 
653 |a Evaluation 
653 |a Breast cancer 
653 |a Image contrast 
653 |a Signal to noise ratio 
700 1 |a Soomro, Toufique 
700 1 |a Ahmed, Ali 
700 1 |a Ubaid, Faisal 
700 1 |a Muhammad Irfan 
700 1 |a Elshafie, Sabah 
700 1 |a Mashraqi, Aisha 
700 1 |a Asiri, Abdullah 
700 1 |a Hussien, Nagla 
700 1 |a Halawani, Hanan 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 143, no. 3 (2025), p. 3091-3133 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229497786/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229497786/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch