Workflow Design and Operational Analysis of a Coal‐Based Multi‐Energy Combined Supply System for Electricity, Heating, Cooling, and Gas

Guardado en:
Detalles Bibliográficos
Publicado en:Energy Science & Engineering vol. 13, no. 7 (Jul 1, 2025), p. 3791-3806
Autor principal: Yu, Shiwei
Otros Autores: Li, Dedong, Zuo, Zhongyi, Feng, Mingjie
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3229700295
003 UK-CbPIL
022 |a 2050-0505 
024 7 |a 10.1002/ese3.70137  |2 doi 
035 |a 3229700295 
045 0 |b d20250701 
084 |a 239634  |2 nlm 
100 1 |a Yu, Shiwei  |u School of Metallurgy, Northeastern University, Shenyang, China 
245 1 |a Workflow Design and Operational Analysis of a Coal‐Based Multi‐Energy Combined Supply System for Electricity, Heating, Cooling, and Gas 
260 |b John Wiley & Sons, Inc.  |c Jul 1, 2025 
513 |a Journal Article 
520 3 |a ABSTRACT The combined cooling, heating, and power (CCHP) system, as a typical representative of novel distributed energy systems, demonstrates significant advantages in the cascade utilization of energy and the control of transmission and distribution losses. However, the inherent reliance of traditional CCHP systems on natural gas as fuel structurally conflicts with China's energy endowment, characterized by abundant coal and scarce natural gas, severely limiting their large‐scale application. To adapt to this energy consumption profile and fully leverage the strengths of CCHP systems, this study establishes a coal‐fueled electricity‐gas‐heating‐cooling polygeneration system based on physical and mathematical models within the Aspen Plus 9.0 commercial simulation platform. The reliability of the proposed model is validated through comparisons with data from relevant literature. To identify the optimal operating parameters, the effects of coal‐water slurry concentration and oxygen‐to‐coal ratio on key gasification indicators (e.g., gasifier temperature, syngas composition, syngas calorific value, and cold gas efficiency) and system output loads (e.g., electricity, heating, cooling, and municipal gas) are systematically investigated. Finally, a comprehensive simulation of the entire system is conducted, with energy and exergy analyses performed on major functional units. The results indicate that coal‐water slurry concentration and oxygen‐to‐coal ratio significantly influence gasifier temperature, syngas composition, calorific value, and cold gas efficiency. The system achieves optimal performance at an oxygen‐to‐coal ratio of 1.05 and a coal‐water slurry concentration of 65%. Under design conditions, the system attains a comprehensive energy efficiency of 66.18% and an exergy efficiency of 34.43%. This study provides an innovative solution to address technological bottlenecks in China's energy transition, not only enhancing the efficiency of clean coal utilization but also offering a new technical pathway for coal‐fired power transformation under the “dual carbon” goals (carbon peaking and carbon neutrality). 
651 4 |a China 
653 |a Calorific value 
653 |a Thermal energy 
653 |a Coal utilization 
653 |a Oxygen 
653 |a Cooling 
653 |a Exergy 
653 |a Water 
653 |a Cold gas 
653 |a Heat 
653 |a Electricity 
653 |a Carbon 
653 |a Gasification 
653 |a Energy utilization 
653 |a Industrial plant emissions 
653 |a Efficiency 
653 |a Natural gas 
653 |a Coal 
653 |a Cooling systems 
653 |a Slurries 
653 |a Composition 
653 |a Natural gas reserves 
653 |a Volatile organic compounds--VOCs 
653 |a Coal gasification 
653 |a Pollutants 
653 |a Distributed generation 
653 |a Heating 
653 |a Energy efficiency 
653 |a Clean energy 
653 |a Thermodynamics 
653 |a Outdoor air quality 
653 |a Synthesis gas 
653 |a Energy consumption 
653 |a Parameter identification 
653 |a Gases 
653 |a Energy industry 
653 |a Mathematical models 
653 |a Carbon dioxide 
653 |a Coal-fired power plants 
653 |a Economic 
653 |a Environmental 
700 1 |a Li, Dedong  |u School of Metallurgy, Northeastern University, Shenyang, China 
700 1 |a Zuo, Zhongyi  |u School of Metallurgy, Northeastern University, Shenyang, China 
700 1 |a Feng, Mingjie  |u School of Metallurgy, Northeastern University, Shenyang, China 
773 0 |t Energy Science & Engineering  |g vol. 13, no. 7 (Jul 1, 2025), p. 3791-3806 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229700295/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3229700295/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229700295/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch