Application of intelligent digital infrastructure into the L-test implementation in the physical education of students with lower limb ambulance

Guardado en:
Bibliografiske detaljer
Udgivet i:Journal of Physical Education and Sport vol. 25, no. 4 (Apr 2025), p. 903-910
Hovedforfatter: Blavt, Oksana
Andre forfattere: Iedynak, Gennadii, Galamanzhuk, Lesia, Vovk, Igor, Naumchuk, Volodymyr, Kovalchuk, Volodymyr, Faidevych, Volodymyr, Volodymyr, Vasyliv
Udgivet:
Universitatea din Pitesti
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3229930880
003 UK-CbPIL
022 |a 2247-8051 
022 |a 2247-806X 
024 7 |a 10.7752/jpes.2025.04098  |2 doi 
035 |a 3229930880 
045 2 |b d20250401  |b d20250430 
084 |a 164144  |2 nlm 
100 1 |a Blavt, Oksana  |u Department of Physical Education, Lviv Polytechnic National University, UKRAINE 
245 1 |a Application of intelligent digital infrastructure into the L-test implementation in the physical education of students with lower limb ambulance 
260 |b Universitatea din Pitesti  |c Apr 2025 
513 |a Journal Article 
520 3 |a The purpose of the study was to determine the psychometric properties of the L-test for students with lower limb amputation implemented by intelligent digital infrastructure. Material and Methods. The experiment involved first-year students (males) with amputation of the lower left limb in the absence of acute conditions, open wounds, or complications. The theoretical and empirical research used the following methods: analysis, synthesis, systematization, generalization, measurement and mathematical statistics. Measurement was implemented using the L-test. Results. The result of our scientific search was the development of an intelligent digital infrastructure designed for the implementation of the L-test, which involved solving tasks in collecting and analyzing testing data such as test execution time, gait trajectory, maintaining balance during gait and accuracy of turning. The intelligent digital infrastructure included: Radiofrequency Identification (RFID) microcontroller with an Arduino Mega 2560 board and PC with OLED display. The development used RFID components: RFID tags located at key points of the L-test trajectory, RFID reader - which is located on the student and RFID - data processing system that accumulates and analyzes information, linking RFID elements into a single system. The signal received and processed by RFID when a student performs a test task is transmitted via radiofrequency communication to the Arduino Mega 2560 microcontroller board. The boarc provides the ability to process signals from RFID to calculate gait parameters when performing the L-test. To increase the efficiency of the intelligent digital infrastructure, Machine Learning algorithms and cloud data storage were implemented. Analysis of the results of the experimental study showed a «high» level of psychometric properties of the L-test for students with lower limb amputations implemented by the intelligent digital infrastructure in contrast to the results recorded by a stopwatch. Conclusions. The use of the intelligent digital infrastructure in the implementation of the L-test for students with lower limb amputations provides a high level of reliability and objectivity of the control results in real-time. The use of modern artificial intelligence technologies in the developed infrastructure allows analyzing large volumes of collected data and creating models capable of assessing the quality of test performance and identifying gait pathologies in students when performing the L-test. 
651 4 |a Ukraine 
653 |a Digital infrastructure 
653 |a Higher education 
653 |a Russia-Ukraine War 
653 |a Prostheses 
653 |a Students with disabilities 
653 |a Mobility 
653 |a Research methodology 
653 |a Artificial intelligence 
653 |a Amputation 
653 |a Quantitative psychology 
653 |a Walking 
653 |a Learning 
653 |a Physical education 
653 |a Generalization 
653 |a War 
653 |a Physical Disabilities 
653 |a Influence of Technology 
653 |a Ukrainian 
653 |a Learning Processes 
653 |a Measurement Techniques 
653 |a Rehabilitation 
653 |a Time 
653 |a Injuries 
653 |a College Freshmen 
653 |a Scientific Research 
653 |a Intelligence 
653 |a Experiments 
653 |a Psychometrics 
653 |a Science Materials 
653 |a Data Processing 
653 |a Research Problems 
653 |a Methods Research 
653 |a Algorithms 
700 1 |a Iedynak, Gennadii  |u Department of Theory & Methodology of Physical Education, Kamianets-Podilskyi National Ivan Ohiienko University, UKRAINE 
700 1 |a Galamanzhuk, Lesia  |u Department of Methodology Elementary School Education Kamianets-Podilskyi National Ivan Ohiienko University, UKRAINE 
700 1 |a Vovk, Igor  |u Department of Military Training and Physical Activity. Lviv National Stepan Gzhytsky University of Veterinary Medicine and Biotechnology 
700 1 |a Naumchuk, Volodymyr  |u Department of Theoretical Foundations and Methods of Physical Education Ternopil Volodymyr Hnatiuk National Pedagogical University, UKRAINE 
700 1 |a Kovalchuk, Volodymyr 
700 1 |a Faidevych, Volodymyr 
700 1 |a Volodymyr, Vasyliv 
773 0 |t Journal of Physical Education and Sport  |g vol. 25, no. 4 (Apr 2025), p. 903-910 
786 0 |d ProQuest  |t Consumer Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3229930880/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3229930880/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3229930880/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch