Hardware Accelerated Brain-Computer Interfaces for Real-Time Neural Decoding

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (2025)
Autor principal: Botadra, Rajeev Bhavin
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3230302641
003 UK-CbPIL
020 |a 9798288835094 
035 |a 3230302641 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Botadra, Rajeev Bhavin 
245 1 |a Hardware Accelerated Brain-Computer Interfaces for Real-Time Neural Decoding 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Every detail of our perception emerges from our brain. Yet, despite being under study for thousands of years (Minagar et al. 2003), many of the precise physiological mechanisms behind our experiences remain a mystery. A critical challenge in advancing our understanding of fundamental neuroscience is the ability to isolate and monitor specific structures in the brain to determine the roles they play in cognition, sensation, and behavior. In this work, we present a fully integrated closed-loop Brain-Computer Interface (BCI) system designed to support real-time communication with the brain for controlled experimentation. Traditional BCIs are unable to meet the latency constraints on the signal decoding pipeline required to react to neural activity. Our system accelerates the decoding algorithm on a Field Programmable Gate Array (FPGA) to process high-resolution neural data with low latency, and stimulates the brain using optogenetics. We demonstrate the system’s latency characteristics, marking a significant speedup over traditional CPU and GPU-based decoding pipelines, power consumption, and decoding accuracy of the quantized decoder implemented on the FPGA. 
653 |a Computer engineering 
653 |a Nanoscience 
653 |a Neurosciences 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3230302641/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3230302641/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch