Maturity detection of Hemerocallis citrina Baroni based on LTCB YOLO and lightweight and efficient layer aggregation network

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Agricultural and Biological Engineering vol. 18, no. 2 (Apr 2025), p. 278-288
Hovedforfatter: Chen, Le
Andre forfattere: Wu, Ligang, Wu, Yeqiu
Udgivet:
International Journal of Agricultural and Biological Engineering (IJABE)
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3230952054
003 UK-CbPIL
022 |a 1934-6344 
022 |a 1934-6352 
024 7 |a 10.25165/j.ijabe.20251802.9238  |2 doi 
035 |a 3230952054 
045 2 |b d20250401  |b d20250430 
084 |a 204230  |2 nlm 
100 1 |a Chen, Le  |u College of Coal Engineering, Shanxi Datong University, Datong 037003, Shanxi, China 
245 1 |a Maturity detection of Hemerocallis citrina Baroni based on LTCB YOLO and lightweight and efficient layer aggregation network 
260 |b International Journal of Agricultural and Biological Engineering (IJABE)  |c Apr 2025 
513 |a Journal Article 
520 3 |a Hemerocallis citrina Baroni is rich in nutritional value, with a clear trend of increasing market demand, and it is a pillar industry for rural economic development. Hemerocallis citrina Baroni exhibits rapid growth, a shortened harvest cycle, lacks a consistent maturity identification standard, and relies heavily on manual labor. To address these issues, a new method for detecting the maturity of Hemerocallis citrina Baroni, called LTCB YOLOv7, has been introduced. To begin with, the layer aggregation network and transition module are made more efficient through the incorporation of Ghost convolution, a lightweight technique that streamlines the model architecture. This results in a reduction of model parameters and computational workload. Second, a coordinate attention mechanism is enhanced between the feature extraction and feature fusion networks, which enhances the model precision and compensates for the performance decline caused by lightweight design. Ultimately, a bi-directional feature pyramid network with weighted connections replaces the Concatenate function in the feature fusion network. This modification enables the integration of information across different stages, resulting in a gradual improvement in the overall model performance. The experimental results show that the improved LTCB YOLOv7 algorithm for Hemerocallis citrina Baroni maturity detection reduces the number of model parameters and floating point operations by about 1.7 million and 7.3G, respectively, and the model volume is compressed by about 3.5M. This refinement leads to enhancements in precision and recall by approximately 0.58% and 0.18% respectively, while the average precision metrics mAP@0.5 and mAP@0.5:0.95 show improvements of about 1.61% and 0.82% respectively. Furthermore, the algorithm achieves a real-time detection performance of 96.15 FPS. The proposed LTCB YOLOv7 algorithm exhibits strong performance in detecting maturity in Hemerocallis citrina Baroni, effectively addressing the challenge of balancing model complexity and performance. It also establishes a standardized approach for maturity detection in Hemerocallis citrina Baroni for identification and harvesting purposes. 
653 |a Maturity 
653 |a Feature extraction 
653 |a Deep learning 
653 |a Physical work 
653 |a Nutritive value 
653 |a Computer peripherals 
653 |a Algorithms 
653 |a Computer vision 
653 |a Economic development 
653 |a Neural networks 
653 |a Rural areas 
653 |a Real time 
653 |a Parameters 
653 |a Energy consumption 
653 |a Harvest 
653 |a Floating point arithmetic 
653 |a Efficiency 
653 |a Hemerocallis citrina 
653 |a Economic 
653 |a Environmental 
700 1 |a Wu, Ligang  |u College of Mechanical and Electrical Engineering, Shanxi Datong University, Datong 037003, Shanxi, China 
700 1 |a Wu, Yeqiu  |u College of Architecture and Surveying Engineering, Shanxi Datong University, Datong 037003, Shanxi, China 
773 0 |t International Journal of Agricultural and Biological Engineering  |g vol. 18, no. 2 (Apr 2025), p. 278-288 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3230952054/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3230952054/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3230952054/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch