Bi-Directional Evolutionary Topology Optimization with Adaptive Evolutionary Ratio for Nonlinear Structures

Guardado en:
Detalles Bibliográficos
Publicado en:Chinese Journal of Mechanical Engineering = Ji xie gong cheng xue bao vol. 38, no. 1 (Dec 2025), p. 122
Autor principal: Tian, Linli
Otros Autores: Zhang, Wenhua
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3231042102
003 UK-CbPIL
022 |a 1000-9345 
022 |a 2192-8258 
024 7 |a 10.1186/s10033-025-01276-w  |2 doi 
035 |a 3231042102 
045 2 |b d20251201  |b d20251231 
100 1 |a Tian, Linli  |u Wuhan University of Technology, Hubei Key Laboratory of Advanced Automotive Components Technology, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229); Wuhan University of Technology, Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229) 
245 1 |a Bi-Directional Evolutionary Topology Optimization with Adaptive Evolutionary Ratio for Nonlinear Structures 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Current topology optimization methods for nonlinear continuum structures often suffer from low computational efficiency and limited applicability to complex nonlinear problems. To address these issues, this paper proposes an improved bi-directional evolutionary structural optimization (BESO) method tailored for maximizing stiffness in nonlinear structures. The optimization program is developed in Python and can be combined with Abaqus software to facilitate finite element analysis (FEA). To accelerate the speed of optimization, a novel adaptive evolutionary ratio (ER) strategy based on the BESO method is introduced, with four distinct adaptive ER functions proposed. The Newton-Raphson method is utilized for iteratively solving nonlinear equilibrium equations, and the sensitivity information for updating design variables is derived using the adjoint method. Additionally, this study extends topology optimization to account for both material nonlinearity and geometric nonlinearity, analyzing the effects of various nonlinearities. A series of comparative studies are conducted using benchmark cases to validate the effectiveness of the proposed method. The results show that the BESO method with adaptive ER significantly improves the optimization efficiency. Compared to the BESO method with a fixed ER, the convergence speed of the four adaptive ER BESO methods is increased by 37.3%, 26.7%, 12% and 18.7%, respectively. Given that Abaqus is a powerful FEA platform, this method has the potential to be extended to large-scale engineering structures and to address more complex optimization problems. This research proposes an improved BESO method with novel adaptive ER, which significantly accelerates the optimization process and enables its application to topology optimization of nonlinear structures. 
653 |a Load 
653 |a Comparative studies 
653 |a Finite element method 
653 |a Heat treating 
653 |a Geometric nonlinearity 
653 |a Optimization 
653 |a Equilibrium 
653 |a Equilibrium equations 
653 |a Newton-Raphson method 
653 |a Energy 
653 |a Algorithms 
653 |a Deformation 
653 |a Topology optimization 
653 |a Efficiency 
653 |a Composite materials 
700 1 |a Zhang, Wenhua  |u Wuhan University of Technology, Hubei Key Laboratory of Advanced Automotive Components Technology, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229); Wuhan University of Technology, Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229) 
773 0 |t Chinese Journal of Mechanical Engineering = Ji xie gong cheng xue bao  |g vol. 38, no. 1 (Dec 2025), p. 122 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231042102/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3231042102/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231042102/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch