Machine learning based multi-parameter droplet optimisation model study

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 25966
Hlavní autor: Li, Ting
Další autoři: Lu, Likun, Zeng, Qingtao, Liao, Kexin
Vydáno:
Nature Publishing Group
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3231090506
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-09435-8  |2 doi 
035 |a 3231090506 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Li, Ting  |u Beijing Institute of Graphic Communication, Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing, China (GRID:grid.443253.7) (ISNI:0000 0004 1791 5856) 
245 1 |a Machine learning based multi-parameter droplet optimisation model study 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Continuous inkjet technology, as a key technology in the field of industrial printing, is favoured for its excellent printing speed, precision and versatility. In order to achieve the accurate generation of ideal droplets in continuous inkjet devices, this paper proposes a new parameter optimisation method, BO-GP, which combines the Bayesian optimisation algorithm with computer vision, and after 50 rounds of iterations, it can converge to the optimal values of the control parameters, and successfully constructs the Pareto frontier of the control parameters. In this paper, experiments were conducted on two different device droplet image datasets, a millimetre-scale inkjet device and a microfluidic device, respectively. Compared with the original BO in Loop method, the optimised minimum objective function value is reduced from 0.378 to 0.331 in the millimetre-scale device, and from 0.073 to 0.046 in the microfluidic device. Moreover, the Pareto solution of the 10 sets of predicted parameters output using the BO-GP method tends to be stable with fluctuations around 0.1, and it takes only 1 h to derive the control conditions for achieving high roundness, high yield and uniform size droplets. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Methods 
653 |a Datasets 
653 |a Bayesian analysis 
653 |a Automation 
653 |a Microfluidics 
653 |a Computer vision 
653 |a Electric fields 
653 |a Objective function 
653 |a Environmental 
700 1 |a Lu, Likun  |u Beijing Institute of Graphic Communication, Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing, China (GRID:grid.443253.7) (ISNI:0000 0004 1791 5856) 
700 1 |a Zeng, Qingtao  |u Beijing Institute of Graphic Communication, Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing, China (GRID:grid.443253.7) (ISNI:0000 0004 1791 5856) 
700 1 |a Liao, Kexin  |u Beijing Institute of Graphic Communication, Beijing Key Laboratory of Signal and Information Processing for High-End Printing Equipment, Beijing, China (GRID:grid.443253.7) (ISNI:0000 0004 1791 5856) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 25966 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231090506/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3231090506/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231090506/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch