Integrated energy, environmental, and economic optimization for energy management systems in PHEVs considering traffic conditions

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 25927
Hoofdauteur: Montazeri-Gh, Morteza
Andere auteurs: Alimohammadi, Ehsan
Gepubliceerd in:
Nature Publishing Group
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3231092013
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-10197-6  |2 doi 
035 |a 3231092013 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Montazeri-Gh, Morteza  |u Iran University of Science and Technology, Department of Mechanical Engineering, System Simulation and Control Laboratory, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587) 
245 1 |a Integrated energy, environmental, and economic optimization for energy management systems in PHEVs considering traffic conditions 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a The growing dependence on fossil fuels has depleted their reserves and significantly contributed to environmental pollution. In recent years, plug-in hybrid electric vehicles (PHEVs) have garnered attention for their ability to reduce fuel consumption and emissions while offering an increased driving range, mainly due to their large battery packs. In these vehicles, critical concerns include the reduction of fuel consumption, control of pollution, and the costs associated with battery degradation. This study introduces a multi-objective optimization approach for the energy management strategy (EMS), focusing on minimizing energy consumption, environmental impact, and the economic implications of battery aging (E3). To achieve this, a plug-in hybrid electric vehicle is modeled based on the Samand vehicle using experimental data. A genetic algorithm is then employed to perform sizing optimization of the components. Additionally, a fuzzy logic controller is developed for the EMS. Ultimately, the multi-objective optimization of the energy management system is conducted across three scenarios: one objective function, two objective functions, and three objective functions evaluated over five driving cycles. The results demonstrate that the optimization approach utilizing three objective functions outperforms other scenarios. Focusing on a single objective function leads to a 13.5% reduction in average battery degradation, though fuel consumption increases by 3%. With two objective functions, battery degradation decreases by 10%, while fuel consumption and emissions rise by 1.9% and 5.7%, respectively. Considering three objective functions leads to average reductions of 3.3% in emissions and 4.4% in battery degradation, with approximately a 0.02% rise in fuel consumption. 
653 |a Fuel cells 
653 |a Hydrocarbons 
653 |a Deep learning 
653 |a Emissions control 
653 |a Traffic 
653 |a Degradation 
653 |a Optimization 
653 |a Hydrogen 
653 |a Hybrid vehicles 
653 |a Energy storage 
653 |a Energy consumption 
653 |a Pollution control 
653 |a Environmental impact 
653 |a Economics 
653 |a Machine learning 
653 |a Emissions 
653 |a Dynamic programming 
653 |a Fossil fuels 
653 |a Electric vehicles 
653 |a Neural networks 
653 |a Objective function 
653 |a Energy management 
653 |a Design 
653 |a Energy efficiency 
653 |a Algorithms 
653 |a Fuzzy logic 
653 |a Cost control 
653 |a Operating costs 
653 |a Economic 
653 |a Environmental 
700 1 |a Alimohammadi, Ehsan  |u Iran University of Science and Technology, Department of Mechanical Engineering, System Simulation and Control Laboratory, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 25927 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231092013/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3231092013/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231092013/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch