Text Classification Using Enhanced Binary Wind Driven Optimization Algorithm

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Egile nagusia: PDF
Argitaratua:
Science and Information (SAI) Organization Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644654
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01606107  |2 doi 
035 |a 3231644654 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Text Classification Using Enhanced Binary Wind Driven Optimization Algorithm 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Document classification using supervised machine learning is now widely used on the internet and in digital libraries. Several studies have focused on English-language document classification. However, Arabic text includes high variation in its morphology, which leads to high extracted features and increases the dimensionality of the classification task. Towards reducing the curse of dimension in Arabic text classification, a wrapper feature selection method is proposed in this study. In more detail, a hybrid metaheuristic model based on the Wind Driven and Simulated Annealing is designed to solve FS task in Arabic text, known as WDFS. The Wind Driven method is initially introduced to optimize the Fs task in the exploration phase. Then, WD is hybridized with simulated annealing as a local search in the exploitation phase to enhance the solutions located by the WD. Three classifiers are utilized to evaluate the selected features using the proposed WDFS: K-nearest Neighbor, Naïve Bayesian, and Decision Tree. The proposed WDFS method was assessed on selected four groups of files from a benchmark TREC Arabic text newswire dataset. Comparative results showed that the WDFS method outperforms other existing Arabic text classification methods in term of the accuracy. The obtained results reveal the high potentiality of WDFS in reliably searching the feature space to obtain the optimal combination of features. 
653 |a Feature extraction 
653 |a Classification 
653 |a Machine learning 
653 |a Simulated annealing 
653 |a Supervised learning 
653 |a Decision trees 
653 |a Heuristic methods 
653 |a Documents 
653 |a Optimization 
653 |a Text categorization 
653 |a Computer science 
653 |a Feature selection 
653 |a Methods 
653 |a Information technology 
653 |a Optimization algorithms 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644654/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644654/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch