Application Analysis and Research of Text Model Based on Improved CNN-LSTM in the Financial Field

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Autore principale: PDF
Pubblicazione:
Science and Information (SAI) Organization Limited
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644674
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160675  |2 doi 
035 |a 3231644674 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Application Analysis and Research of Text Model Based on Improved CNN-LSTM in the Financial Field 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a With the continuous development of information technology, public opinion analysis based on open-source texts and financial situation awareness has become a research hotspot. This study focuses on financial news and commentary information. First, a topic crawler classification model combining the advantages of CNN and LSTM is proposed to improve the topic recognition ability of financial news texts, and a CNN-LSTM-AM stock price fluctuation prediction model is proposed. This model performs sentiment analysis through BiLSTM, integrates multiple emotional factors and market historical data, and demonstrates superior predictive performance compared to traditional models in multiple experiments. 
653 |a News 
653 |a Situational awareness 
653 |a Sentiment analysis 
653 |a Prediction models 
653 |a Texts 
653 |a Public opinion 
653 |a Text categorization 
653 |a Computer science 
653 |a Investments 
653 |a Trends 
653 |a Securities markets 
653 |a Text analysis 
653 |a Neural networks 
653 |a Social networks 
653 |a Classification 
653 |a Information processing 
653 |a Natural language processing 
653 |a Emotions 
653 |a Semantics 
653 |a Investor behavior 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644674/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644674/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch