Leveraging LSTM-Driven Predictive Analytics for Resource Allocation and Cost Efficiency Optimization in Project Management

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644681
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160661  |2 doi 
035 |a 3231644681 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Leveraging LSTM-Driven Predictive Analytics for Resource Allocation and Cost Efficiency Optimization in Project Management 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Resource planning and cost optimization are essential elements of effective project management. Conventional models are weak in changing environments because they cannot keep pace with intricate task interdependencies and changing project constraints. To overcome such weaknesses, this research envisions an LSTM-based predictive analytics model that deploys temporal trends and past project information for precise predictions of task duration, resource allocations, and possible delays. The proposed method combines sequential data modeling with Long Short-Term Memory (LSTM) networks, along with data preprocessing and optimization, to enhance project scheduling and cost control decision-making. With TensorFlow implementation, the proposed LSTM-PRO model resulted in a Mean Squared Error (MSE) of 0.0025, Root Mean Squared Error (RMSE) of 0.05, and an R² score of 0.96, which was far better than ARIMA and other baseline models. The model resulted in a cost saving of 20% on project costs and 20% rise in resource utilization from 65% to 85%. The outcome proves the effectiveness and applicability of the model in actual project settings. 
653 |a Resource utilization 
653 |a Root-mean-square errors 
653 |a Project management 
653 |a Optimization 
653 |a Resource allocation 
653 |a Changing environments 
653 |a Effectiveness 
653 |a Scheduling 
653 |a Predictive analytics 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Trends 
653 |a Decision making 
653 |a Computer engineering 
653 |a Energy efficiency 
653 |a Automation 
653 |a Time series 
653 |a Cost control 
653 |a Strategic planning 
653 |a Risk management 
653 |a Resource management 
653 |a Case studies 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644681/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644681/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch