RFID Integration with Internet of Things: Data Processing Algorithm Based on Convolutional Neural Network

Na minha lista:
Detalhes bibliográficos
Publicado no:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Autor principal: PDF
Publicado em:
Science and Information (SAI) Organization Limited
Assuntos:
Acesso em linha:Citation/Abstract
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644684
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160679  |2 doi 
035 |a 3231644684 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a RFID Integration with Internet of Things: Data Processing Algorithm Based on Convolutional Neural Network 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Radio Frequency Identification is a fast and reliable communication module that performs automatic data capture to identify and track individual objects and people. Frequency-coded tags employ resonant networks to decode their unique code. A multi-scatterer or multi-resonant method encodes the data. Research primarily related to the current investigation predicted that the chipless RFID tag resonant network has a high bit encoding capacity. This study addresses the simulation, optimization, fabrication, testing, and data encoding methods for chipless RFID tags. This research provides a framework for the open-ended quarter-wavelength stub multi-resonator method in chipless Radio Frequency Identification (RFID) tags. The proposed design enhances the tag's data encoding capacity and improves its robustness to ecological differences. This study integrates Error Correction Coding (ECC) and Adaptive Modulation Systems (AMS) employing Convolutional Neural Networks (CNN) to enhance the tag's performance. The AMS dynamically alters the modulation parameters based on channel states, while ECC improves data reliability. The results indicate efficient performance compared to traditional chipless RFID tags, highlighting the possibility of practical behavior in typical applications that necessitate reliable and high-capacity data transmission. 
653 |a Adaptive systems 
653 |a Data transmission 
653 |a Radio frequency identification 
653 |a Data processing 
653 |a Internet of Things 
653 |a Modulation 
653 |a Error correction 
653 |a Artificial neural networks 
653 |a Tags 
653 |a Coding 
653 |a Data capture 
653 |a Silicon 
653 |a Computer science 
653 |a Automation 
653 |a Manufacturing 
653 |a Access control 
653 |a Suppliers 
653 |a Aircraft 
653 |a Error correction & detection 
653 |a Bar codes 
653 |a Sensors 
653 |a Neural networks 
653 |a Antennas 
653 |a Supply chain management 
653 |a World War II 
653 |a Design 
653 |a Inventory 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644684/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644684/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch