Application of Deep Learning-Based Image Compression Restoration Technology in Power System Unstructured Data Management

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Egile nagusia: PDF
Argitaratua:
Science and Information (SAI) Organization Limited
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644714
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160609  |2 doi 
035 |a 3231644714 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Application of Deep Learning-Based Image Compression Restoration Technology in Power System Unstructured Data Management 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a In power-system unstructured-data management, a large volume of images from inspection drones, substation cameras, and smart meters is heavily compressed due to bandwidth and storage constraints, resulting in lower resolution that hinders defect detection and maintenance decisions. Although deep-learning super-resolution (SR) techniques have made significant advances, real-world deployments still require a balance between reconstruction accuracy and model lightweightness. To meet this need, we introduce a channel-attention-embedded Transformer SR method (CAET). The approach adaptively injects channel attention into both the Transformer’s global features and the convolutional local features, harnessing their complementary strengths while dynamically enhancing critical information. Tested on five public datasets and compared with six representative algorithms, CAET achieves the best or second-best performance across all upscaling factors; at 4× enlargement, it outperforms the advanced SwinIR method by 0.09 dB in PSNR on Urban100 and by 0.30 dB on Manga109, with noticeably improved visual quality. Experiments demonstrate that CAET delivers high-precision, low-latency restoration of compressed images for the power sector while keeping model complexity low. 
610 4 |a CNN 
653 |a Data management 
653 |a Image compression 
653 |a Unstructured data 
653 |a Substations 
653 |a Deep learning 
653 |a Restoration 
653 |a Datasets 
653 |a Computer science 
653 |a Fourier transforms 
653 |a Design 
653 |a Algorithms 
653 |a Smart meters 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644714/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644714/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch