Method for Tea Leaf Plucking Timing Prediction with High Resolution of Images Based on YOLO11

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
1. Verfasser: PDF
Veröffentlicht:
Science and Information (SAI) Organization Limited
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644716
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160616  |2 doi 
035 |a 3231644716 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Method for Tea Leaf Plucking Timing Prediction with High Resolution of Images Based on YOLO11 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a As a method for estimating the time when tea leaves reach their peak quality (amino acid content) (optimum picking time), our previous study revealed that the optimum picking time is when the accumulated temperature from the detection of germination of new buds reaches 600°C. However, the accuracy of this germination detection was insufficient, so the estimation accuracy of the optimum picking time was also insufficient. Since annotation accuracy is extremely important for germination detection by YOLO11, strict attention is paid to annotation by hand and by increasing the number of training datasets. The detection accuracy has been improved compared to the germination detection by YOLOv8, which was previously proposed and used relatively low-resolution images. The conclusion of this study is that the estimation method of the optimum picking time based on the criterion that the optimum picking time (amino acid content reaches its peak) is effective when the accumulated temperature from germination detection meets the condition of 600°C. The effectiveness of this method has been confirmed by comparison with germination detection by experts. For tea farmers, being able to predict the optimum picking time, when the amino acid content in the new buds is at its peak, is important, and we are sure it will have a positive impact on agricultural researchers studying this subject. 
651 4 |a China 
653 |a Germination 
653 |a Amino acids 
653 |a Tea 
653 |a Image resolution 
653 |a Annotations 
653 |a Estimation 
653 |a Effectiveness 
653 |a Growth models 
653 |a Accuracy 
653 |a Agricultural production 
653 |a Computer science 
653 |a Profits 
653 |a Seeds 
653 |a Leaves 
653 |a Phenology 
653 |a Germplasm 
653 |a Gross income 
653 |a Genetic diversity 
653 |a Profitability 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644716/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644716/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch