Artificial Intelligence in Disaster Risk Management: A Scientometric Mapping of Evolution, Collaboration, and Emerging Trends (2003–2025)

Guardado en:
Bibliografiske detaljer
Udgivet i:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Hovedforfatter: PDF
Udgivet:
Science and Information (SAI) Organization Limited
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644744
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01606101  |2 doi 
035 |a 3231644744 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Artificial Intelligence in Disaster Risk Management: A Scientometric Mapping of Evolution, Collaboration, and Emerging Trends (2003–2025) 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Recent years have seen a dramatic increase in the number of and severity of natural disasters, driven in part by climate change and urbanization. Artificial Intelligence (AI) appears to be a promising new technology that can transform disaster risk management (DRM) and provide new opportunities for prediction, monitoring, response, and recovery. The present study performs a bibliometric review of applications of AI to DRM, from a total collection of 7842 scientific articles extracted from Scopus, Web of Science and OpenAlex databases from the year 2003 to the year 2025. Exploring the trends of publications, authorship, international collaboration, and research topics, the study reveals the development and current status of AI incorporating disaster management. The results illustrate an apparent growth in interest in the field of science, how machine learning and deep learning methodologies are leading, and the raise of geospatial AI, remote sensing, and social media analysis in disaster preparedness and response. Other issues including data quality, ethics, technology and trust in AI systems are also considered. This study offers helpful perspectives on the status quo and future development of AI-based DRMs. 
653 |a Risk management 
653 |a Scientometrics 
653 |a Collaboration 
653 |a Bibliometrics 
653 |a Emergency preparedness 
653 |a Artificial intelligence 
653 |a Trends 
653 |a Remote sensing 
653 |a Natural disasters 
653 |a Disasters 
653 |a Deep learning 
653 |a Machine learning 
653 |a Disaster management 
653 |a Climate change 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644744/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644744/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch