XPathia: A Deep Learning Approach for Translating Natural Language into XPath Queries for Non-Technical Users

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Advanced Computer Science and Applications vol. 16, no. 6 (2025)
Autore principale: PDF
Pubblicazione:
Science and Information (SAI) Organization Limited
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3231644821
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.01606102  |2 doi 
035 |a 3231644821 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a XPathia: A Deep Learning Approach for Translating Natural Language into XPath Queries for Non-Technical Users 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a XPath is a widely used language for navigating and extracting data from XML documents due to its simple syntax and powerful querying capabilities. However, non-technical users often struggle to retrieve the needed information from XML files, as they lack knowledge of XML structures and query languages like XPath. To address this challenge, we propose XPathia, a novel deep learning-based model that automatically translates natural language questions into corresponding XPath queries. Our approach employs supervised learning on an annotated XML dataset to learn accurate mappings between natural language and structured XPath expressions. We evaluate XPathia using two standard metrics: Component Matching (CM) and Exact Matching (EM). Experimental results demonstrate that XPathia achieves a state-of-the-art performance with an accuracy of 25.85% on the test set. 
653 |a Translating 
653 |a Matching 
653 |a Deep learning 
653 |a Queries 
653 |a Information retrieval 
653 |a Extensible Markup Language 
653 |a Supervised learning 
653 |a Query languages 
653 |a Language 
653 |a Text categorization 
653 |a Datasets 
653 |a Computer science 
653 |a Syntax 
653 |a Relevance 
653 |a Data base management systems 
653 |a Natural language processing 
653 |a Documents 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 6 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231644821/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231644821/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch