Nonparametric Estimation of Latent Treatment Effects for Two Armed Clinical Trials Using Infinite Mixture Models

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:ProQuest Dissertations and Theses (2025)
المؤلف الرئيسي: Ellis, Benjamin Jefferson
منشور في:
ProQuest Dissertations & Theses
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3231748631
003 UK-CbPIL
020 |a 9798288852756 
035 |a 3231748631 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Ellis, Benjamin Jefferson 
245 1 |a Nonparametric Estimation of Latent Treatment Effects for Two Armed Clinical Trials Using Infinite Mixture Models 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Control versus treatment clinical trials are prone to averaging over individual effects to produce a one size fits all conclusion of whether a drug/procedure have efficacy, on average. However, it is often the case that subjects have their own unique response to treatment that are not necessarily captured by an average effect size. We have developed an infinite mixture model that can produce a nonparametric estimate of the latent distribution of treatment effects for a population. The estimated distribution of treatment effects enables researchers to make conclusions about what percentage of the population will have a treatment effect of a specified size (i.e. medically significant), without assuming a parametric form on their data. This development opens the door for personalized medicine to be statistically modeled in two arm clinical trials. 
653 |a Statistics 
653 |a Medicine 
653 |a Biostatistics 
653 |a Bioinformatics 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231748631/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231748631/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch