Geometric Representation Learning for Accelerated Design Analysis in Data-Scarce Environments

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Chen, Yu-hsuan
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3231830826
003 UK-CbPIL
020 |a 9798288853074 
035 |a 3231830826 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Chen, Yu-hsuan 
245 1 |a Geometric Representation Learning for Accelerated Design Analysis in Data-Scarce Environments 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Geometric representation learning can address challenges that were previously difficult for data-driven methods due to data scarcity. Geometry data scarcity can be mitigated through grammar- based modeling or modality conversion, while label scarcity can be tackled in two ways. First, when indirect, easily accessible labels are available, weakly supervised learning allows for the extraction of high-level design features. Second, in the complete absence of labels, inter- modality geometric pretraining improves design quantity estimation in few-shot scenarios. This approach is effective for tasks involving scalar values, temporal histories, and scalar fields. Furthermore, customized training strategies can be tailored to capture and process domain-specific geometries, such as thin shells and geometries with fine-scale details. 
653 |a Design 
653 |a Mechanical engineering 
653 |a Artificial intelligence 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231830826/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231830826/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch