Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya

Guardado en:
Detalles Bibliográficos
Publicado en:Hydrology and Earth System Sciences vol. 29, no. 14 (2025), p. 3073
Autor principal: Girona-Mata, Marc
Otros Autores: Orr, Andrew, Widmann, Martin, Bannister, Daniel, Ghulam Hussain Dars, Hosking, Scott, Norris, Jesse, Ocio, David, Phillips, Tony, Steiner, Jakob, Turner, Richard E
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3231831022
003 UK-CbPIL
022 |a 1027-5606 
022 |a 1607-7938 
024 7 |a 10.5194/hess-29-3073-2025  |2 doi 
035 |a 3231831022 
045 2 |b d20250101  |b d20251231 
084 |a 123631  |2 nlm 
100 1 |a Girona-Mata, Marc  |u British Antarctic Survey, UK Research and Innovation, Cambridge, UK; Department of Engineering, University of Cambridge, Cambridge, UK 
245 1 |a Probabilistic precipitation downscaling for ungauged mountain sites: a pilot study for the Hindu Kush Himalaya 
260 |b Copernicus GmbH  |c 2025 
513 |a Journal Article 
520 3 |a This study introduces a novel approach to post-processing (i.e. downscaling and bias-correcting) reanalysis-driven regional climate model daily precipitation outputs that can be generalised to ungauged mountain locations by leveraging sparse in situ observations and a probabilistic regression framework. We call this post-processing approach generalised probabilistic regression (GPR) and implement it using both generalised linear models and artificial neural networks (i.e. multi-layer perceptrons). By testing the GPR post-processing approach across three Hindu Kush Himalaya (HKH) basins with varying hydro-meteorological characteristics and four experiments, which are representative of real-world scenarios, we find it performs consistently much better than both raw regional climate model output and deterministic bias correction methods for generalising daily precipitation post-processing to ungauged locations. We also find that GPR models are flexible and can be trained using data from a single region or multiple regions combined together, without major impacts on model performance. Additionally, we show that the GPR approach results in superior skill for post-processing entirely ungauged regions, by leveraging data from other regions as well as ungauged high-elevation ranges. This suggests that GPR models have potential for extending post-processing of daily precipitation to ungauged areas of HKH. Whilst multi-layer perceptrons yield marginally improved results overall, generalised linear models are a robust choice, particularly for data-scarce scenarios, i.e. post-processing extreme precipitation events and generalising to completely ungauged regions. 
651 4 |a Asia 
651 4 |a Hindu Kush 
653 |a Extreme weather 
653 |a Bias 
653 |a Datasets 
653 |a Models 
653 |a Pilot projects 
653 |a Multilayers 
653 |a Artificial neural networks 
653 |a Multilayer perceptrons 
653 |a Neural networks 
653 |a Regional climate models 
653 |a Hydrology 
653 |a Statistical analysis 
653 |a Precipitation 
653 |a Climate change 
653 |a Mountains 
653 |a Simulation 
653 |a Hydrometeorology 
653 |a Climate models 
653 |a Water resources 
653 |a Regional climates 
653 |a Regions 
653 |a Monsoons 
653 |a Climate 
653 |a Climate science 
653 |a Daily precipitation 
653 |a Environmental 
700 1 |a Orr, Andrew  |u British Antarctic Survey, UK Research and Innovation, Cambridge, UK 
700 1 |a Widmann, Martin  |u School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK 
700 1 |a Bannister, Daniel  |u WTW Research Network, WTW, London, UK 
700 1 |a Ghulam Hussain Dars  |u U.S.-Pakistan Center for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro, Pakistan 
700 1 |a Hosking, Scott  |u British Antarctic Survey, UK Research and Innovation, Cambridge, UK; The Alan Turing Institute, London, UK 
700 1 |a Norris, Jesse  |u Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA, USA 
700 1 |a Ocio, David  |u Mott MacDonald, Cambridge, UK 
700 1 |a Phillips, Tony  |u British Antarctic Survey, UK Research and Innovation, Cambridge, UK 
700 1 |a Steiner, Jakob  |u Institute of Geography and Regional Science, University of Graz, Graz, Austria; Himalayan University Consortium, Lalitpur, Nepal 
700 1 |a Turner, Richard E  |u Department of Engineering, University of Cambridge, Cambridge, UK 
773 0 |t Hydrology and Earth System Sciences  |g vol. 29, no. 14 (2025), p. 3073 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231831022/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3231831022/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231831022/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch