MARC

LEADER 00000nab a2200000uu 4500
001 3231993639
003 UK-CbPIL
022 |a 2196-7091 
024 7 |a 10.1186/s40561-025-00381-6  |2 doi 
035 |a 3231993639 
045 2 |b d20251201  |b d20251231 
100 1 |a Tao, Lei  |u The Education University of Hong Kong, Department of Mathematics and Information Technology, Hong Kong SAR, China (GRID:grid.419993.f) (ISNI:0000 0004 1799 6254) 
245 1 |a Learning analytics in immersive virtual learning environments: a systematic literature review 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Research on learning analytics (LA) in various educational contexts is extensive, but research specifically on LA in immersive virtual learning environments (immersive VLEs) remains underexplored in terms of theoretical integration, methodological diversity, and multimodal data utilisation. This study reviews applications of learning analytics in immersive VLEs following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The paper presents the findings from 34 peer-reviewed journal articles and conference proceedings, describing their research purposes, learning environments, subjects, theoretical frameworks, data types, data analysis techniques, and challenges. Findings show that (1) the application of LA in immersive VLEs has expanded, shifting from an initial focus on learning outcomes and behavioural analysis to include performance prediction, self-regulation, social interaction, and affective states. However, these areas remain unevenly explored; (2) research has predominantly examined desktop-based immersive VLEs, while fewer studies have explored immersive virtual reality settings such as head-mounted displaysand cave automatic virtual environments; (3) higher education students have been the most frequently studied participants, with fewer studies involving K-12 students and adult learners; (4) most studies have employed data-driven approaches to identify behavioural patterns, but explicit theoretical frameworks have been used less frequently to guide analysis and interpretation; (5) behaviour data remains the most commonly used data type; (6) statistical methods such as regression and ANOVA dominate the analytical approaches, with machine learning and deep learning techniques remaining underutilised; and (7) challenges including technical complexity, data interpretability, privacy concerns, and adoption barriers impact the effectiveness and scalability of LA applications in immersive VLEs. These findings provide a comprehensive synthesis of current research trends, methodological limitations, and key challenges in LA applications within immersive VLEs, offering insights to guide future research and practice. 
653 |a Behavior 
653 |a Computer assisted instruction--CAI 
653 |a Performance prediction 
653 |a School environment 
653 |a Immersive virtual reality 
653 |a Educational technology 
653 |a Data analysis 
653 |a Learning management systems 
653 |a Variance analysis 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Virtual reality 
653 |a Students 
653 |a Literature reviews 
653 |a Online data bases 
653 |a Statistical methods 
653 |a Educational research 
653 |a Learning analytics 
653 |a Deep learning 
653 |a Systematic review 
653 |a Immersive learning 
653 |a Virtual environments 
653 |a Conferences (Gatherings) 
653 |a Experiential Learning 
653 |a Influence of Technology 
653 |a Educational Methods 
653 |a Teaching Methods 
653 |a Learning Processes 
653 |a Student Behavior 
653 |a Academic Achievement 
653 |a Learning Experience 
653 |a Periodicals 
653 |a Meta Analysis 
653 |a Databases 
653 |a Electronic Learning 
653 |a Student Participation 
653 |a Educational Experience 
653 |a Educational Environment 
653 |a Database Management Systems 
653 |a Learner Engagement 
653 |a Educational Strategies 
700 1 |a Cukurova, Mutlu  |u University College London, UCL Institute of Education, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201) 
700 1 |a Song, Yanjie  |u The Education University of Hong Kong, Department of Mathematics and Information Technology, Hong Kong SAR, China (GRID:grid.419993.f) (ISNI:0000 0004 1799 6254) 
773 0 |t Smart Learning Environments  |g vol. 12, no. 1 (Dec 2025), p. 43 
786 0 |d ProQuest  |t Education Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3231993639/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3231993639/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3231993639/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch