Datavzrd: Rapid programming- and maintenance-free interactive visualization and communication of tabular data

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 7 (Jul 2025), p. e0323079
Autor principal: Wiegand, Felix
Otros Autores: Lähnemann, David, Mölder, Felix, Uzuner, Hamdiye, Prinz, Adrian, Schramm, Alexander, Köster, Johannes
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3232444153
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0323079  |2 doi 
035 |a 3232444153 
045 2 |b d20250701  |b d20250731 
084 |a 174835  |2 nlm 
100 1 |a Wiegand, Felix 
245 1 |a Datavzrd: Rapid programming- and maintenance-free interactive visualization and communication of tabular data 
260 |b Public Library of Science  |c Jul 2025 
513 |a Journal Article 
520 3 |a Tabular data, often scattered across multiple tables, is the primary output of data analyses in virtually all scientific fields. Exchange and communication of tabular data is therefore a central challenge. We present Datavzrd, a tool for creating portable, visually rich, interactive reports from tabular data in any kind of scientific discipline. Datavzrd unifies the strengths of currently common generic approaches for interactive visualization like R Shiny with the portability, ease of use and sustainability of plain spreadsheets. The generated reports do not require the maintenance of a web server nor the installation of specialized software for viewing and can simply be attached to emails, shared via cloud services, or serve as manuscript supplements. They can be specified without requiring imperative programming, thereby enabling rapid development and offering accessibility for non-computational scientists, unlocking the look and feel of dedicated manually crafted web applications without the maintenance and development burden. Datavzrd reports scale from small tables to thousands or millions of rows and offer the ability to link multiple related tables, allowing to jump between corresponding rows or hierarchically explore growing levels of detail. 
653 |a Programming languages 
653 |a Tables (data) 
653 |a Datasets 
653 |a Maintenance 
653 |a Applications programs 
653 |a Communication 
653 |a Imperative programming 
653 |a Cloud computing 
653 |a Data analysis 
653 |a Automation 
653 |a Python 
653 |a Reproducibility 
653 |a Visualization 
653 |a Interfaces 
653 |a Social 
700 1 |a Lähnemann, David 
700 1 |a Mölder, Felix 
700 1 |a Uzuner, Hamdiye 
700 1 |a Prinz, Adrian 
700 1 |a Schramm, Alexander 
700 1 |a Köster, Johannes 
773 0 |t PLoS One  |g vol. 20, no. 7 (Jul 2025), p. e0323079 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3232444153/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3232444153/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3232444153/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch