AN ENSEMBLE MACHINE LEARNING APPROACH FOR BUG REPORT PREDICTION INSPIRED BY NATURE-BASED MODELS

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal of Communication Networks and Information Security vol. 17, no. 3 (2025), p. 203-209
Autore principale: Nagagopiraju, V
Altri autori: Navyasre, Pothuguntla, Varshitha, Tamma, Kumar, Anisetti Praveen, Manikanta, Bethamcherla
Pubblicazione:
Kohat University of Science and Technology (KUST)
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3232790628
003 UK-CbPIL
022 |a 2073-607X 
022 |a 2076-0930 
035 |a 3232790628 
045 2 |b d20250101  |b d20251231 
084 |a 100914  |2 nlm 
100 1 |a Nagagopiraju, V  |u Department of CSE-AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
245 1 |a AN ENSEMBLE MACHINE LEARNING APPROACH FOR BUG REPORT PREDICTION INSPIRED BY NATURE-BASED MODELS 
260 |b Kohat University of Science and Technology (KUST)  |c 2025 
513 |a Journal Article 
520 3 |a In software development systems, the maintenance process of software systems attracted the attention of researchers due to its importance in fixing the defects discovered in the software testing by using bug reports (BRs) which include detailed information like descriptions, status, reporter, assignee, priority, and severity of the bug and other information. The main problem in this process is how to analyze these BRs to discover all defects in the system, which is a tedious and timeconsuming task if done manually because the number of BRs increases dramatically. Thus, the automated solution is the best. Most of the current research focuses on automating this process from different aspects, such as detecting the severity or priority of the bug. However, they did not consider the nature of the bug, which is a multi-class classification problem. This paper solves this problem by proposing a new prediction model to analyze BRs and predict the nature of the bug. The proposed model constructs an ensemble machine learning algorithm using natural language processing (NLP) and machine learning techniques. We simulate the proposed model by using a publicly available dataset for two online software bug repositories (Mozilla and Eclipse), which includes six classes: Program Anomaly, GUI, Network or Security, Configuration, Performance, and Test-Code. The simulation results show that the proposed model can achieve better accuracy than most existing models, namely, 90.42% without text augmentation and 96.72% with text augmentation. 
653 |a Software quality 
653 |a Machine learning 
653 |a Accuracy 
653 |a Metadata 
653 |a Datasets 
653 |a Software development 
653 |a Configuration management 
653 |a Prediction models 
653 |a Optimization techniques 
653 |a Genetic algorithms 
653 |a Classification 
653 |a Support vector machines 
653 |a Debugging 
653 |a Natural language processing 
653 |a Development systems 
653 |a Automation 
653 |a Defects 
653 |a Software testing 
653 |a Software development tools 
700 1 |a Navyasre, Pothuguntla  |u Department of CSE-AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Varshitha, Tamma  |u Department of CSE-AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Kumar, Anisetti Praveen  |u Department of CSE-AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Manikanta, Bethamcherla  |u Department of CSE-AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
773 0 |t International Journal of Communication Networks and Information Security  |g vol. 17, no. 3 (2025), p. 203-209 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3232790628/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3232790628/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3232790628/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch