DETECTING CREDIT CARD FRAUD WITH ADVANCED MACHINE LEARNING AND DEEP LEARNING METHODS

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:International Journal of Communication Networks and Information Security vol. 17, no. 3 (2025), p. 192-198
Үндсэн зохиолч: Babu, P Bujji
Бусад зохиолчид: Kumar, Yaganti Venkata Ajay, Sumanths, Khagga, Karun, Kommireddy, Siddhartha, Indlamuri
Хэвлэсэн:
Kohat University of Science and Technology (KUST)
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3232790734
003 UK-CbPIL
022 |a 2073-607X 
022 |a 2076-0930 
035 |a 3232790734 
045 2 |b d20250101  |b d20251231 
084 |a 100914  |2 nlm 
100 1 |a Babu, P Bujji  |u Department of CSE - AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
245 1 |a DETECTING CREDIT CARD FRAUD WITH ADVANCED MACHINE LEARNING AND DEEP LEARNING METHODS 
260 |b Kohat University of Science and Technology (KUST)  |c 2025 
513 |a Journal Article 
520 3 |a Credit card frauds are easy and friendly targets. E-commerce and many other online sites have increased the online payment modes, increasing the risk for online frauds. Increase in fraud rates, researchers started using different machine learning methods to detect and analyse frauds in online transactions. The main aim of the paper is to design and develop a novel fraud detection method for Streaming Transaction Data, with an objective, to analyse the past transaction details of the customers and extract the behavioural patterns. Where cardholders are clustered into different groups based on their transaction amount. Then using sliding window strategy to aggregate the transaction made by the cardholders from different groups so that the behavioural pattern of the groups can be extracted respectively. Later different classifiers are trained over the groups separately. And then the classifier with better rating score can be chosen to be one of the best methods to predict frauds. Thus, followed by a feedback mechanism to solve the problem of concept drift. In this paper, we worked with European credit card fraud dataset. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Deep learning 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Fraud prevention 
653 |a Credit card fraud 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Classification 
653 |a Natural language processing 
653 |a Algorithms 
653 |a Banking 
700 1 |a Kumar, Yaganti Venkata Ajay  |u Department of CSE - AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Sumanths, Khagga  |u Department of CSE - AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Karun, Kommireddy  |u Department of CSE - AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
700 1 |a Siddhartha, Indlamuri  |u Department of CSE - AIML, Chalapathi Institute of Engineering and Technology, LAM, Guntur, Andhra Pradesh, India 
773 0 |t International Journal of Communication Networks and Information Security  |g vol. 17, no. 3 (2025), p. 192-198 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3232790734/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3232790734/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3232790734/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch