Detecting Fraud in E-Commerce Transactions Through Comprehensive User Behavior and Process Analysis

Zapisane w:
Opis bibliograficzny
Wydane w:International Journal of Communication Networks and Information Security vol. 17, no. 3 (2025), p. 527-538
1. autor: Khanna, K Rajesh
Kolejni autorzy: Sathvika, Dameruppula Sri, Rakshitha, Keshaboina, Kumar, Bodige Karthik
Wydane:
Kohat University of Science and Technology (KUST)
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3232790735
003 UK-CbPIL
022 |a 2073-607X 
022 |a 2076-0930 
035 |a 3232790735 
045 2 |b d20250101  |b d20251231 
084 |a 100914  |2 nlm 
100 1 |a Khanna, K Rajesh  |u Assistant Professor, Department of Computer Sciences and Engineering, 
245 1 |a Detecting Fraud in E-Commerce Transactions Through Comprehensive User Behavior and Process Analysis 
260 |b Kohat University of Science and Technology (KUST)  |c 2025 
513 |a Journal Article 
520 3 |a Financial fraud detection in real-time transactions has become a critical priority for financial institutions due to the exponential growth of digital payments and the increasing sophistication of fraudulent activities. Traditional fraud detection systems primarily relied on rule-based approaches and manual oversight. While these systems were initially effective, they have struggled to keep pace with evolving fraud techniques. Their rigidity often results in high false positives, delayed responses, and an inability to identify new or subtle fraud patterns. Early detection methods, such as statistical analysis and threshold-based systems, were limited in scope and failed to handle the complexity and dynamism of modern fraud. With the advancement of artificial intelligence and machine learning, a new paradigm in fraud detection has emerged. AI-powered systems can analyze vast amounts of transaction data in real-time, learning from historical patterns and continuously improving their predictive accuracy. These models can detect anomalies and fraudulent behavior with significantly greater precision than traditional systems. Techniques such as support vector machines (SVM) and decision trees are particularly effective in identifying complex, non-linear relationships in data, allowing for a more nuanced understanding of fraud indicators. The primary motivation for implementing Al-based solutions is the urgent need for real-time, automated fraud detection systems that can operate at scale, minimize human error, and reduce financial losses. These intelligent systems offer enhanced adaptability to emerging fraud techniques, lower false positive rates, and improved scalability, making them ideal for today's fast-paced digital financial ecosystem. By processing transactions instantaneously, the proposed system enables proactive fraud mitigation, ensuring secure and reliable financial operations. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Values 
653 |a Fraud prevention 
653 |a Credit card fraud 
653 |a Statistical methods 
653 |a Transaction processing 
653 |a Semantic web 
653 |a Algorithms 
653 |a Complexity 
653 |a Automation 
653 |a Surveillance 
653 |a Decision trees 
653 |a Real time 
653 |a Statistical analysis 
653 |a Credit card processing 
653 |a Efficiency 
700 1 |a Sathvika, Dameruppula Sri  |u UG Student, Department of Computer Sciences and Engineering 
700 1 |a Rakshitha, Keshaboina  |u UG Student, Department of Computer Sciences and Engineering 
700 1 |a Kumar, Bodige Karthik  |u UG Student, Department of Computer Sciences and Engineering 
773 0 |t International Journal of Communication Networks and Information Security  |g vol. 17, no. 3 (2025), p. 527-538 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3232790735/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3232790735/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3232790735/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch