Distributed Impulsive Multi-Spacecraft Approach Trajectory Optimization Based on Cooperative Game Negotiation

Guardat en:
Dades bibliogràfiques
Publicat a:Aerospace vol. 12, no. 7 (2025), p. 628-649
Autor principal: Fan Shuhui
Altres autors: Zhang, Xiang, Liao Wenhe
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233031475
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12070628  |2 doi 
035 |a 3233031475 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Fan Shuhui 
245 1 |a Distributed Impulsive Multi-Spacecraft Approach Trajectory Optimization Based on Cooperative Game Negotiation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A cooperative game negotiation strategy considering multiple constraints is proposed for distributed impulsive multi-spacecraft approach missions in the presence of defending spacecraft. It is a dual-stage decision-making method that includes offline trajectory planning and online distributed negotiation. In the trajectory planning stage, a relative orbital dynamics model is first established based on the Clohessy–Wiltshire (CW) equations, and the state transition equations for impulsive maneuvers are derived. Subsequently, a multi-objective optimization model is formulated based on the NSGA-II algorithm, utilizing a constraint dominance principle (CDP) to address various constraints and generate Pareto front solutions for each spacecraft. In the distributed negotiation stage, the negotiation strategy among spacecraft is modeled as a cooperative game. A potential function is constructed to further analyze the existence and global convergence of Nash equilibrium. Additionally, a simulated annealing negotiation strategy is developed to iteratively select the optimal comprehensive approach strategy from the Pareto fronts. Simulation results demonstrate that the proposed method effectively optimizes approach trajectories for multi-spacecraft under complex constraints. By leveraging inter-satellite iterative negotiation, the method converges to a Nash equilibrium. Additionally, the simulated annealing negotiation strategy enhances global search performance, avoiding entrapment in local optima. Finally, the effectiveness and robustness of the dual-stage decision-making method were further demonstrated through Monte Carlo simulations. 
653 |a Game theory 
653 |a Negotiations 
653 |a Strategy 
653 |a Games 
653 |a Optimization techniques 
653 |a Orbits 
653 |a Equilibrium 
653 |a Multiple objective analysis 
653 |a Spacecraft 
653 |a Decision making 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Optimization models 
653 |a Trajectory optimization 
653 |a Planning 
653 |a Monte Carlo simulation 
653 |a Pareto optimization 
653 |a Engineering 
653 |a Methods 
653 |a Simulated annealing 
653 |a Constraints 
653 |a Optimization algorithms 
653 |a Trajectory planning 
653 |a Entrapment 
653 |a Orbital mechanics 
700 1 |a Zhang, Xiang 
700 1 |a Liao Wenhe 
773 0 |t Aerospace  |g vol. 12, no. 7 (2025), p. 628-649 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233031475/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233031475/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233031475/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch