Multi-Objective Optimization Method for Multi-Module Micro–Nano Satellite Components Assignment and Layout

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 7 (2025), p. 614-636
Autor principal: Zhang, Hao
Otros Autores: Zhou, Jun, Liu, Guanghui
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The assembly optimization design of satellite components is a crucial element in the overall design of satellites. In this paper, a novel three-dimensional assembly optimization design problem (3D-AODP) for multi-module micro–nano satellite components is proposed according to the engineering requirements, aiming at optimizing the satellite mass characteristics, and taking into account constraints such as space interference, space occupation and special location. Multi-module micro–nano satellites are a new type of satellite configuration based on the assembly of multiple U-shaped cube units. The 3D-AODP of its components is a challenging two-layer composite optimization task involving discrete variable optimization of component allocation and continuous variable optimization of component layout, which interact with each other. To solve the problem, a hybrid assembly optimization method based on tabu search (TS) and multi-objective differential evolutionary (MODE) algorithms is proposed, in which the assignment problem of the components is converted into a domain search problem by the TS algorithm. The space interference constraints and space occupancy constraints of the components are considered, and an assignment scheme with the minimum mass difference is obtained. On this basis, a bi-objective differential evolutionary algorithm is used to develop the layout optimization problem for the components, which takes into account the spatial non-interference constraints and special location constraints of the components, and obtains the Pareto solution set of the assembly scheme under the optimal mass characteristics (moment of inertia and product of inertia). Finally, the feasibility and effectiveness of the proposed method is demonstrated by an engineering case.
ISSN:2226-4310
DOI:10.3390/aerospace12070614
Fuente:Advanced Technologies & Aerospace Database