Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods

Guardat en:
Dades bibliogràfiques
Publicat a:Agriculture vol. 15, no. 14 (2025), p. 1557-1580
Autor principal: De Xuehong
Altres autors: Li, Haoming, Zhang, Jianchao, Li Nanding, Wan Huimeng, Ma, Yanhua
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233032320
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15141557  |2 doi 
035 |a 3233032320 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a De Xuehong  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
245 1 |a Prediction of the Calorific Value and Moisture Content of <i>Caragana korshinskii</i> Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient <inline-formula> ( R P 2 ) </inline-formula>, root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its <inline-formula> R P 2 </inline-formula>, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. 
651 4 |a Inner Mongolia China 
651 4 |a China 
651 4 |a Mongolia 
653 |a Combustion 
653 |a Mean square errors 
653 |a Software 
653 |a Calorific value 
653 |a Wavelet transforms 
653 |a Solid fuels 
653 |a Algorithms 
653 |a Adaptive sampling 
653 |a Modelling 
653 |a Regression analysis 
653 |a Biomass energy 
653 |a Least squares method 
653 |a Moisture content 
653 |a Machine learning 
653 |a Energy utilization 
653 |a Industrial production 
653 |a Water content 
653 |a Accuracy 
653 |a Quality assessment 
653 |a Calorimetry 
653 |a Preprocessing 
653 |a Genetic algorithms 
653 |a Predictions 
653 |a Production lines 
653 |a Bomb calorimetry 
653 |a Quality control 
653 |a Carbon 
653 |a Neural networks 
653 |a Wavelengths 
653 |a Hyperspectral imaging 
653 |a Caragana korshinskii 
653 |a Economic 
653 |a Caragana 
653 |a Environmental 
700 1 |a Li, Haoming  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
700 1 |a Zhang, Jianchao  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
700 1 |a Li Nanding  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
700 1 |a Wan Huimeng  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
700 1 |a Ma, Yanhua  |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) 
773 0 |t Agriculture  |g vol. 15, no. 14 (2025), p. 1557-1580 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233032320/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233032320/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233032320/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch