Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods
Guardat en:
| Publicat a: | Agriculture vol. 15, no. 14 (2025), p. 1557-1580 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , |
| Publicat: |
MDPI AG
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3233032320 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2077-0472 | ||
| 024 | 7 | |a 10.3390/agriculture15141557 |2 doi | |
| 035 | |a 3233032320 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231331 |2 nlm | ||
| 100 | 1 | |a De Xuehong |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 245 | 1 | |a Prediction of the Calorific Value and Moisture Content of <i>Caragana korshinskii</i> Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient <inline-formula> ( R P 2 ) </inline-formula>, root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its <inline-formula> R P 2 </inline-formula>, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. | |
| 651 | 4 | |a Inner Mongolia China | |
| 651 | 4 | |a China | |
| 651 | 4 | |a Mongolia | |
| 653 | |a Combustion | ||
| 653 | |a Mean square errors | ||
| 653 | |a Software | ||
| 653 | |a Calorific value | ||
| 653 | |a Wavelet transforms | ||
| 653 | |a Solid fuels | ||
| 653 | |a Algorithms | ||
| 653 | |a Adaptive sampling | ||
| 653 | |a Modelling | ||
| 653 | |a Regression analysis | ||
| 653 | |a Biomass energy | ||
| 653 | |a Least squares method | ||
| 653 | |a Moisture content | ||
| 653 | |a Machine learning | ||
| 653 | |a Energy utilization | ||
| 653 | |a Industrial production | ||
| 653 | |a Water content | ||
| 653 | |a Accuracy | ||
| 653 | |a Quality assessment | ||
| 653 | |a Calorimetry | ||
| 653 | |a Preprocessing | ||
| 653 | |a Genetic algorithms | ||
| 653 | |a Predictions | ||
| 653 | |a Production lines | ||
| 653 | |a Bomb calorimetry | ||
| 653 | |a Quality control | ||
| 653 | |a Carbon | ||
| 653 | |a Neural networks | ||
| 653 | |a Wavelengths | ||
| 653 | |a Hyperspectral imaging | ||
| 653 | |a Caragana korshinskii | ||
| 653 | |a Economic | ||
| 653 | |a Caragana | ||
| 653 | |a Environmental | ||
| 700 | 1 | |a Li, Haoming |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 700 | 1 | |a Zhang, Jianchao |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 700 | 1 | |a Li Nanding |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 700 | 1 | |a Wan Huimeng |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 700 | 1 | |a Ma, Yanhua |u Faculty of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot 010020, China; lihm@emails.imau.edu.cn (H.L.); zhangjianchao@imau.edu.cn (J.Z.); li.nanding@imau.edu.cn (N.L.); pidaxing@emails.imau.edu.cn (H.W.); mayanhua@imau.edu.cn (Y.M.) | |
| 773 | 0 | |t Agriculture |g vol. 15, no. 14 (2025), p. 1557-1580 | |
| 786 | 0 | |d ProQuest |t Agriculture Science Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3233032320/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3233032320/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3233032320/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |