Cascaded Dual-Inpainting Network for Scene Text

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 14 (2025), p. 7742-7758
Autor principal: Liu, Chunmei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233049791
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15147742  |2 doi 
035 |a 3233049791 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Liu, Chunmei 
245 1 |a Cascaded Dual-Inpainting Network for Scene Text 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Scene text inpainting is a significant research challenge in visual text processing, with critical applications spanning incomplete traffic sign comprehension, degraded container-code recognition, occluded vehicle license plate processing, and other incomplete scene text processing systems. In this paper, a cascaded dual-inpainting network for scene text (CDINST) is proposed. The architecture integrates two scene text inpainting models to reconstruct the text foreground: the Structure Generation Module (SGM) and Structure Reconstruction Module (SRM). The SGM primarily performs preliminary foreground text reconstruction and extracts text structures. Building upon the SGM’s guidance, the SRM subsequently enhances the foreground structure reconstruction through structure-guided refinement. The experimental results demonstrate compelling performance on the benchmark dataset, showcasing both the effectiveness of the proposed dual-inpainting network and its accuracy in incomplete scene text recognition. The proposed network achieves an average recognition accuracy improvement of 11.94% compared to baseline methods for incomplete scene text recognition tasks. 
653 |a Accuracy 
653 |a Methods 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Corruption 
653 |a Text structure 
653 |a Neural networks 
653 |a Semantics 
773 0 |t Applied Sciences  |g vol. 15, no. 14 (2025), p. 7742-7758 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233049791/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233049791/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233049791/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch