Dark Web Traffic Classification Based on Spatial–Temporal Feature Fusion and Attention Mechanism

Guardado en:
Detalles Bibliográficos
Publicado en:Computers vol. 14, no. 7 (2025), p. 248-265
Autor principal: Li, Junwei
Otros Autores: Pan Zhisong
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233123565
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14070248  |2 doi 
035 |a 3233123565 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Li, Junwei  |u Institute of Computer and Information Engineering, Xinxiang University, Xinxiang 453003, China; ljw@xxu.edu.cn 
245 1 |a Dark Web Traffic Classification Based on Spatial–Temporal Feature Fusion and Attention Mechanism 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a There is limited research on current traffic classification methods for dark web traffic and the classification results are not very satisfactory. To improve the prediction accuracy and classification precision of dark web traffic, a classification method (CLA) based on spatial–temporal feature fusion and an attention mechanism is proposed. When processing raw bytes, the combination of a CNN and LSTM is used to extract local spatial–temporal features from raw data packets, while an attention module is introduced to process key spatial–temporal data. The experimental results show that this model can effectively extract and utilize the spatial–temporal features of traffic data and use the attention mechanism to measure the importance of different features, thereby achieving accurate predictions of different dark web traffic. In comparative experiments, the accuracy, recall rate, and F1 score of this model are higher than those of other traditional methods. 
653 |a Accuracy 
653 |a Machine learning 
653 |a Packets (communication) 
653 |a Search engines 
653 |a Deep learning 
653 |a Datasets 
653 |a Classification 
653 |a Information storage 
653 |a Drug trafficking 
653 |a Spatiotemporal data 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Traffic flow 
653 |a Methods 
653 |a Algorithms 
653 |a Dark web 
700 1 |a Pan Zhisong  |u Institute of Command Control Engineering, Army Engineering University, Nanjing 210007, China 
773 0 |t Computers  |g vol. 14, no. 7 (2025), p. 248-265 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233123565/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233123565/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233123565/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch