Dark Web Traffic Classification Based on Spatial–Temporal Feature Fusion and Attention Mechanism
Guardado en:
| Publicado en: | Computers vol. 14, no. 7 (2025), p. 248-265 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3233123565 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2073-431X | ||
| 024 | 7 | |a 10.3390/computers14070248 |2 doi | |
| 035 | |a 3233123565 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231447 |2 nlm | ||
| 100 | 1 | |a Li, Junwei |u Institute of Computer and Information Engineering, Xinxiang University, Xinxiang 453003, China; ljw@xxu.edu.cn | |
| 245 | 1 | |a Dark Web Traffic Classification Based on Spatial–Temporal Feature Fusion and Attention Mechanism | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a There is limited research on current traffic classification methods for dark web traffic and the classification results are not very satisfactory. To improve the prediction accuracy and classification precision of dark web traffic, a classification method (CLA) based on spatial–temporal feature fusion and an attention mechanism is proposed. When processing raw bytes, the combination of a CNN and LSTM is used to extract local spatial–temporal features from raw data packets, while an attention module is introduced to process key spatial–temporal data. The experimental results show that this model can effectively extract and utilize the spatial–temporal features of traffic data and use the attention mechanism to measure the importance of different features, thereby achieving accurate predictions of different dark web traffic. In comparative experiments, the accuracy, recall rate, and F1 score of this model are higher than those of other traditional methods. | |
| 653 | |a Accuracy | ||
| 653 | |a Machine learning | ||
| 653 | |a Packets (communication) | ||
| 653 | |a Search engines | ||
| 653 | |a Deep learning | ||
| 653 | |a Datasets | ||
| 653 | |a Classification | ||
| 653 | |a Information storage | ||
| 653 | |a Drug trafficking | ||
| 653 | |a Spatiotemporal data | ||
| 653 | |a Neural networks | ||
| 653 | |a Support vector machines | ||
| 653 | |a Traffic flow | ||
| 653 | |a Methods | ||
| 653 | |a Algorithms | ||
| 653 | |a Dark web | ||
| 700 | 1 | |a Pan Zhisong |u Institute of Command Control Engineering, Army Engineering University, Nanjing 210007, China | |
| 773 | 0 | |t Computers |g vol. 14, no. 7 (2025), p. 248-265 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3233123565/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text + Graphics |u https://www.proquest.com/docview/3233123565/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3233123565/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |