POTMEC: A Novel Power Optimization Technique for Mobile Edge Computing Networks

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:Computation vol. 13, no. 7 (2025), p. 161-175
Príomhchruthaitheoir: Ananth, Kumar Tamilarasan
Rannpháirtithe: Rajmohan Rajendirane, Ajagbe Sunday Adeola, Akinlade Oluwatobi, Adigun Matthew Olusegun
Foilsithe / Cruthaithe:
MDPI AG
Ábhair:
Rochtain ar líne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 3233124193
003 UK-CbPIL
022 |a 2079-3197 
024 7 |a 10.3390/computation13070161  |2 doi 
035 |a 3233124193 
045 2 |b d20250101  |b d20251231 
084 |a 231446  |2 nlm 
100 1 |a Ananth, Kumar Tamilarasan  |u Computer Science and Engineering, IFET College of Engineering, Gangarampalaiyam 605108, India; tananthkumar@ieee.org 
245 1 |a POTMEC: A Novel Power Optimization Technique for Mobile Edge Computing Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The rapid growth of ultra-dense mobile edge computing (UDEC) in 5G IoT networks has intensified energy inefficiencies and latency bottlenecks exacerbated by dynamic channel conditions and imperfect CSI in real-world deployments. This paper introduces POTMEC, a power optimization framework that combines a channel-aware adaptive power allocator using real-time SNR measurements, a MATLAB-trained RL model for joint offloading decisions and a decaying step-size algorithm guaranteeing convergence. Computational offloading is a productive technique to overcome mobile battery life issues by processing a few parts of the mobile application on the cloud. It investigated how multi-access edge computing can reduce latency and energy usage. The experiments demonstrate that the proposed model reduces transmission energy consumption by 27.5% compared to baseline methods while maintaining the latency below 15 ms in ultra-dense scenarios. The simulation results confirm a 92% accuracy in near-optimal offloading decisions under dynamic channel conditions. This work advances sustainable edge computing by enabling energy-efficient IoT deployments in 5G ultra-dense networks without compromising QoS. 
653 |a Augmented reality 
653 |a Integer programming 
653 |a Investigations 
653 |a Edge computing 
653 |a Applications programs 
653 |a Bandwidths 
653 |a Optimization techniques 
653 |a Quality of service architectures 
653 |a Cloud computing 
653 |a Software services 
653 |a Optimization 
653 |a Network latency 
653 |a Mobile computing 
653 |a Computation offloading 
653 |a Power management 
653 |a Algorithms 
653 |a Real time 
653 |a Energy consumption 
653 |a Internet of Things 
653 |a Decisions 
700 1 |a Rajmohan Rajendirane  |u Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur 603203, India 
700 1 |a Ajagbe Sunday Adeola  |u Department of Computer Science, University of Zululand, Kwadlangezwa 3886, South Africa 
700 1 |a Akinlade Oluwatobi  |u Department of Computer Science, Birmingham City University, Birmingham B5 5JU, UK 
700 1 |a Adigun Matthew Olusegun  |u Department of Computer Science, University of Zululand, Kwadlangezwa 3886, South Africa 
773 0 |t Computation  |g vol. 13, no. 7 (2025), p. 161-175 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233124193/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233124193/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233124193/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch