Enhanced Multi-Level Recommender System Using Turnover-Based Weighting for Predicting Regional Preferences

Guardado en:
Detalles Bibliográficos
Publicado en:Computers vol. 14, no. 7 (2025), p. 294-315
Autor principal: Venkatesan, Thillainayagam
Otros Autores: Thirunavukarasu Ramkumar, Arun, Pandian J
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233127782
003 UK-CbPIL
022 |a 2073-431X 
024 7 |a 10.3390/computers14070294  |2 doi 
035 |a 3233127782 
045 2 |b d20250101  |b d20251231 
084 |a 231447  |2 nlm 
100 1 |a Venkatesan, Thillainayagam  |u Department of Computer Applications, A.V.C. College of Engineering, Mayiladuthurai 609305, India; tvntvn09@avccengg.net 
245 1 |a Enhanced Multi-Level Recommender System Using Turnover-Based Weighting for Predicting Regional Preferences 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the realm of recommender systems, the prediction of diverse customer preferences has emerged as a compelling research challenge, particularly for multi-state business organizations operating across various geographical regions. Collaborative filtering, a widely utilized recommendation technique, has demonstrated its efficacy in sectors such as e-commerce, tourism, hotel management, and entertainment-based customer services. In the item-based collaborative filtering approach, users’ evaluations of purchased items are considered uniformly, without assigning weight to the participatory data sources and users’ ratings. This approach results in the ‘relevance problem’ when assessing the generated recommendations. In such scenarios, filtering collaborative patterns based on regional and local characteristics, while emphasizing the significance of branches and user ratings, could enhance the accuracy of recommendations. This paper introduces a turnover-based weighting model utilizing a big data processing framework to mine multi-level collaborative filtering patterns. The proposed weighting model assigns weights to participatory data sources based on the turnover cost of the branches, where turnover refers to the revenue generated through total business transactions conducted by the branch. Furthermore, the proposed big data framework eliminates the forced integration of branch data into a centralized repository and avoids the complexities associated with data movement. To validate the proposed work, experimental studies were conducted using a benchmarking dataset, namely the ‘Movie Lens Dataset’. The proposed approach uncovers multi-level collaborative pattern bases, including global, sub-global, and local levels, with improved predicted ratings compared with results generated by traditional recommender systems. The findings of the proposed approach would be highly beneficial to the strategic management of an interstate business organization, enabling them to leverage regional implications from user preferences. 
653 |a Strategic management 
653 |a User behavior 
653 |a Weighting 
653 |a Data processing 
653 |a Datasets 
653 |a Collaboration 
653 |a Recommender systems 
653 |a Fuzzy sets 
653 |a Big Data 
653 |a Open source software 
653 |a Data sources 
653 |a Manuscripts 
653 |a Data analysis 
653 |a Distributed processing 
653 |a Machine learning 
653 |a Public domain 
653 |a Multimedia 
653 |a Decision making 
653 |a Algorithms 
653 |a Predictions 
653 |a Filtration 
653 |a Customer services 
653 |a Data warehouses 
700 1 |a Thirunavukarasu Ramkumar  |u School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India 
700 1 |a Arun, Pandian J  |u School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore 632014, India 
773 0 |t Computers  |g vol. 14, no. 7 (2025), p. 294-315 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233127782/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233127782/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233127782/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch