Enhancing Fatigue Life Prediction Accuracy: A Parametric Study of Stress Ratios and Hole Position Using SMART Crack Growth Technology

Guardado en:
Detalles Bibliográficos
Publicado en:Crystals vol. 15, no. 7 (2025), p. 596-613
Autor principal: Fageehi Yahya Ali
Otros Autores: Alshoaibi, Abdulnaser M
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233140663
003 UK-CbPIL
022 |a 2073-4352 
024 7 |a 10.3390/cryst15070596  |2 doi 
035 |a 3233140663 
045 2 |b d20250101  |b d20251231 
084 |a 231448  |2 nlm 
100 1 |a Fageehi Yahya Ali 
245 1 |a Enhancing Fatigue Life Prediction Accuracy: A Parametric Study of Stress Ratios and Hole Position Using SMART Crack Growth Technology 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study presents a unique and comprehensive application of ANSYS Mechanical R19.2’s SMART crack growth feature, leveraging its capabilities to conduct an unprecedented parametric investigation into fatigue crack propagation behavior under a wide range of positive and negative stress ratios, and to provide detailed insights into the influence of hole positioning on crack trajectory. By uniquely employing an unstructured mesh method that significantly reduces computational overhead and automates mesh updates, this research overcomes traditional fracture simulation limitations. The investigation breaks new ground by comprehensively examining an unprecedented range of both positive (R = 0.1 to 0.5) and negative (R = −0.1 to −0.5) stress ratios, revealing previously unexplored relationships in fracture mechanics. Through rigorous and extensive numerical simulations on two distinct specimen configurations, i.e., a notched plate with a strategically positioned hole under fatigue loading and a cracked rectangular plate with dual holes under static loading, this work establishes groundbreaking correlations between stress parameters and fatigue behavior. The research reveals a novel inverse relationship between the equivalent stress intensity factor and stress ratio, alongside a previously uncharacterized inverse correlation between stress ratio and von Mises stress. Notably, a direct, accelerating relationship between stress ratio and fatigue life is demonstrated, where higher R-values non-linearly increase fatigue resistance by mitigating stress concentration, challenging conventional linear approximations. This investigation makes a substantial contribution to fracture mechanics by elucidating the fundamental role of hole positioning in controlling crack propagation paths. The research uniquely demonstrates that depending on precise hole location, cracks will either deviate toward the hole or maintain their original trajectory, a phenomenon attributed to the asymmetric stress distribution at the crack tip induced by the hole’s presence. These novel findings, validated against existing literature, represent a significant advancement in predictive modeling for fatigue life assessment, offering critical new insights for engineering design and maintenance strategies in high-stakes industries. 
653 |a Load 
653 |a Stress ratio 
653 |a Software 
653 |a Accuracy 
653 |a Investigations 
653 |a Stress concentration 
653 |a Crack propagation 
653 |a Life assessment 
653 |a Ratios 
653 |a Civil engineering 
653 |a Cracking (fracturing) 
653 |a Stress intensity factors 
653 |a Crack initiation 
653 |a Life prediction 
653 |a Fatigue life assessment 
653 |a Fatigue failure 
653 |a Automation 
653 |a Aerospace engineering 
653 |a Fatigue strength 
653 |a Fracture mechanics 
653 |a Crack tips 
653 |a Stress distribution 
653 |a Propagation 
653 |a Simulation 
653 |a Failure analysis 
653 |a Design engineering 
653 |a Rectangular plates 
653 |a Prediction models 
653 |a Trajectories 
653 |a Finite element analysis 
653 |a Fatigue cracks 
653 |a Positioning 
700 1 |a Alshoaibi, Abdulnaser M 
773 0 |t Crystals  |g vol. 15, no. 7 (2025), p. 596-613 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233140663/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233140663/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233140663/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch