Performance-Based Classification of Users in a Containerized Stock Trading Application Environment Under Load

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 14, no. 14 (2025), p. 2848-2874
Hovedforfatter: Rak Tomasz
Andre forfattere: Drabek, Jan, Charytanowicz Małgorzata
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3233143504
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14142848  |2 doi 
035 |a 3233143504 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Rak Tomasz  |u Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland; jdrabek@prz.edu.pl 
245 1 |a Performance-Based Classification of Users in a Containerized Stock Trading Application Environment Under Load 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Emerging digital technologies are transforming how consumers participate in financial markets, yet their benefits depend critically on the speed, reliability, and transparency of the underlying platforms. Online stock trading platforms must maintain high efficiency underload to ensure a good user experience. This paper presents performance analysis under various load conditions based on the containerized stock exchange system. A comprehensive data logging pipeline was implemented, capturing metrics such as API response times, database query times, and resource utilization. We analyze the collected data to identify performance patterns, using both statistical analysis and machine learning techniques. Preliminary analysis reveals correlations between application processing time and database load, as well as the impact of user behavior on system performance. Association rule mining is applied to uncover relationships among performance metrics, and multiple classification algorithms are evaluated for their ability to predict user activity class patterns from system metrics. The insights from this work can guide optimizations in similar distributed web applications to improve scalability and reliability under a heavy load. By framing performance not merely as a technical property but as a determinant of financial decision-making and well-being, the study contributes actionable insights for designers of consumer-facing fintech services seeking to meet sustainable development goals through trustworthy, resilient digital infrastructure. 
653 |a Big Data 
653 |a Machine learning 
653 |a User behavior 
653 |a Performance measurement 
653 |a Data mining 
653 |a Classification 
653 |a Applications programs 
653 |a Reliability 
653 |a Design 
653 |a Data analysis 
653 |a Data collection 
653 |a User experience 
653 |a Sustainable development 
653 |a Automation 
653 |a Stock exchanges 
653 |a Resource utilization 
653 |a Statistical analysis 
653 |a Workloads 
653 |a Response time (computers) 
653 |a Business metrics 
653 |a Data logging 
700 1 |a Drabek, Jan  |u Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland; jdrabek@prz.edu.pl 
700 1 |a Charytanowicz Małgorzata  |u Department of Computer Science, Lublin University of Technology, Nadbystrzycka 36B, 20-618 Lublin, Poland; m.charytanowicz@pollub.pl 
773 0 |t Electronics  |g vol. 14, no. 14 (2025), p. 2848-2874 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233143504/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233143504/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233143504/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch