Fortified-Edge 2.0: Advanced Machine-Learning-Driven Framework for Secure PUF-Based Authentication in Collaborative Edge Computing

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Future Internet vol. 17, no. 7 (2025), p. 272-300
المؤلف الرئيسي: Aarella, Seema G
مؤلفون آخرون: Yanambaka, Venkata P, Mohanty, Saraju P, Kougianos Elias
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189365
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17070272  |2 doi 
035 |a 3233189365 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Aarella, Seema G  |u Department of Computer Science, Austin College, Sherman, TX 75090, USA 
245 1 |a Fortified-Edge 2.0: Advanced Machine-Learning-Driven Framework for Secure PUF-Based Authentication in Collaborative Edge Computing 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This research introduces Fortified-Edge 2.0, a novel authentication framework that addresses critical security and privacy challenges in Physically Unclonable Function (PUF)-based systems for collaborative edge computing (CEC). Unlike conventional methods that transmit full binary Challenge–Response Pairs (CRPs) and risk exposing sensitive data, Fortified-Edge 2.0 employs a machine-learning-driven feature-abstraction technique to extract and utilize only essential characteristics of CRPs, obfuscating the raw binary sequences. These feature vectors are then processed using lightweight cryptographic primitives, including ECDSA, to enable secure authentication without exposing the original CRP. This eliminates the need to transmit sensitive binary data, reducing the attack surface and bandwidth usage. The proposed method demonstrates strong resilience against modeling attacks, replay attacks, and side-channel threats while maintaining the inherent efficiency and low power requirements of PUFs. By integrating PUF unpredictability with ML adaptability, this research delivers a scalable, secure, and resource-efficient solution for next-generation authentication in edge environments. 
653 |a Cryptography 
653 |a Software 
653 |a Collaboration 
653 |a Protocol 
653 |a Bandwidths 
653 |a Real time 
653 |a Edge computing 
653 |a Cybersecurity 
653 |a Data processing 
653 |a Binary data 
653 |a Privacy 
653 |a Machine learning 
653 |a High performance computing 
653 |a Internet of Things 
653 |a Smart cities 
653 |a Computer centers 
653 |a Data integrity 
653 |a Infrastructure 
653 |a Artificial intelligence 
653 |a Authentication protocols 
653 |a Confidentiality 
653 |a Decision making 
653 |a Energy efficiency 
653 |a Authentication 
653 |a Digital signatures 
653 |a Security systems 
700 1 |a Yanambaka, Venkata P  |u School of Sciences, Texas Woman’s University, Denton, TX 76204, USA; vyanambaka@twu.edu 
700 1 |a Mohanty, Saraju P  |u Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, USA; saraju.mohanty@unt.edu 
700 1 |a Kougianos Elias  |u Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA; elias.kougianos@unt.edu 
773 0 |t Future Internet  |g vol. 17, no. 7 (2025), p. 272-300 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189365/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189365/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189365/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch