Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Fractal and Fractional vol. 9, no. 7 (2025), p. 411-433
Yazar: Alharthi, N S
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189390
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9070411  |2 doi 
035 |a 3233189390 
045 2 |b d20250101  |b d20251231 
100 1 |a Alharthi, N S 
245 1 |a Dynamical and Computational Analysis of Fractional Korteweg–de Vries-Burgers and Sawada–Kotera Equations in Terms of Caputo Fractional Derivative 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This work examines the fractional Sawada–Kotera and Korteweg–de Vries (KdV)–Burgers equations, which are essential models of nonlinear wave phenomena in many scientific domains. The homotopy perturbation transform method (HPTM) and the Yang transform decomposition method (YTDM) are two sophisticated techniques employed to derive analytical solutions. The proposed methods are novel and remarkable hybrid integral transform schemes that effectively incorporate the Adomian decomposition method, homotopy perturbation method, and Yang transform method. They efficiently yield rapidly convergent series-type solutions through an iterative process that requires fewer computations. The Caputo operator, used to express the fractional derivatives in the equations, provides a robust framework for analyzing the behavior of non-integer-order systems. To validate the accuracy and reliability of the obtained solutions, numerical simulations and graphical representations are presented. Furthermore, the results are compared with exact solutions using various tables and graphs, illustrating the effectiveness and ease of implementation of the proposed approaches for various fractional partial differential equations. The influence of the non-integer parameter on the solutions behavior is specifically examined, highlighting its function in regulating wave propagation and diffusion. In addition, a comparison with the natural transform iterative method and optimal auxiliary function method demonstrates that the proposed methods are more accurate than these alternative approaches. The results highlight the potential of YTDM and HPTM as reliable tools for solving nonlinear fractional differential equations and affirm their relevance in wave mechanics, fluid dynamics, and other fields where fractional-order models are applied. 
653 |a Calculus 
653 |a Wave mechanics 
653 |a Investigations 
653 |a Iterative methods 
653 |a Operators (mathematics) 
653 |a Partial differential equations 
653 |a Series (mathematics) 
653 |a Decomposition 
653 |a Exact solutions 
653 |a Wave propagation 
653 |a Methods 
653 |a Fractional calculus 
653 |a Integral transforms 
653 |a Integers 
653 |a Fluid dynamics 
653 |a Graphical representations 
653 |a Burgers equation 
653 |a Perturbation methods 
653 |a Ordinary differential equations 
773 0 |t Fractal and Fractional  |g vol. 9, no. 7 (2025), p. 411-433 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189390/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189390/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189390/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch