Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Fire vol. 8, no. 7 (2025), p. 280-295
מחבר ראשי: Luo, Jing
מחברים אחרים: Tian Guangxin, Chen, Xu, Zhang, Shijie, Liu, Zhen
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189394
003 UK-CbPIL
022 |a 2571-6255 
024 7 |a 10.3390/fire8070280  |2 doi 
035 |a 3233189394 
045 2 |b d20250101  |b d20251231 
100 1 |a Luo, Jing  |u College of Civil Engineering, Shanghai Normal University, Shanghai 201400, China; luojing94@shnu.edu.cn (J.L.); 1000567234@smail.shnu.edu.cn (G.T.); 1000531341@smail.shnu.edu.cn (S.Z.) 
245 1 |a Temperature Field Prediction of Glulam Timber Connections Under Fire Hazard: A DeepONet-Based Approach 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents an integrated computational framework for predicting temperature fields in glulam beam–column connections under fire conditions, combining finite element modeling, automated parametric analysis, and deep learning techniques. A high-fidelity heat transfer finite element model was developed, incorporating the anisotropic thermal properties of wood and temperature-dependent material behavior, validated against experimental data with strong agreement. To enable large-scale parametric studies, an automated Abaqus model modification and data processing system was implemented, improving computational efficiency through the batch processing of geometric and material parameters. The extracted temperature field data was used to train a DeepONet neural network, which achieved accurate temperature predictions (with a L2 relative error of 1.5689% and an R2 score of 0.9991) while operating faster than conventional finite element analysis. This research establishes a complete workflow from fundamental heat transfer analysis to efficient data generation and machine learning prediction, providing structural engineers with practical tools for the performance-based fire safety design of timber connections. The framework’s computational efficiency enables comprehensive parametric studies and design optimizations that were previously impractical, offering significant advancements for structural fire engineering applications. 
653 |a Temperature distribution 
653 |a Finite element method 
653 |a Fire hazards 
653 |a Wood 
653 |a Accuracy 
653 |a Beam-columns 
653 |a Data processing 
653 |a Timber 
653 |a Structural engineers 
653 |a Thermodynamic properties 
653 |a Safety engineering 
653 |a Thermal properties 
653 |a Computer applications 
653 |a Automation 
653 |a Machine learning 
653 |a Fire prevention 
653 |a Heat conductivity 
653 |a Deep learning 
653 |a Radiation 
653 |a Batch processing 
653 |a Heat transfer 
653 |a Simulation 
653 |a Construction 
653 |a Temperature dependence 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Temperature effects 
653 |a Predictions 
653 |a Computational efficiency 
653 |a Glulam 
653 |a Mathematical models 
653 |a Engineering 
653 |a Parametric analysis 
653 |a Environmental 
700 1 |a Tian Guangxin  |u College of Civil Engineering, Shanghai Normal University, Shanghai 201400, China; luojing94@shnu.edu.cn (J.L.); 1000567234@smail.shnu.edu.cn (G.T.); 1000531341@smail.shnu.edu.cn (S.Z.) 
700 1 |a Chen, Xu  |u Institute for Structural Mechanics, Ruhr University Bochum, 44801 Bochum, Germany; chen.xu@rub.de 
700 1 |a Zhang, Shijie  |u College of Civil Engineering, Shanghai Normal University, Shanghai 201400, China; luojing94@shnu.edu.cn (J.L.); 1000567234@smail.shnu.edu.cn (G.T.); 1000531341@smail.shnu.edu.cn (S.Z.) 
700 1 |a Liu, Zhen  |u Institute for Structural Mechanics, Ruhr University Bochum, 44801 Bochum, Germany; chen.xu@rub.de 
773 0 |t Fire  |g vol. 8, no. 7 (2025), p. 280-295 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189394/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189394/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189394/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch