Lower-Latency Screen Updates over QUIC with Forward Error Correction

Guardat en:
Dades bibliogràfiques
Publicat a:Future Internet vol. 17, no. 7 (2025), p. 297-322
Autor principal: Eghbal Nooshin
Altres autors: Lu, Paul
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Resum:There are workloads that do not need the total data ordering enforced by the Transmission Control Protocol (TCP). For example, Virtual Network Computing (VNC) has a sequence of pixel-based updates in which the order of rectangles can be relaxed. However, VNC runs over the TCP and can have higher latency due to unnecessary blocking to ensure total ordering. By using Quick UDP Internet Connections (QUIC) as the underlying protocol, we are able to implement a partial order delivery approach, which can be combined with Forward Error Correction (FEC) to reduce data latency. Our earlier work on consistency fences provides a mechanism and semantic foundation for partial ordering. Our new evaluation on the Emulab testbed, with two different synthetic workloads for streaming and non-streaming updates, shows that our partial order and FEC strategy can reduce the blocking time and inter-delivery time of rectangles compared to total delivery. For one workload, partially ordered data with FEC can reduce the 99-percentile message-blocking time to 0.4 ms versus 230 ms with totally ordered data. That workload was with 0.5% packet loss, 100 ms Round-Trip Time (RTT), and 100 Mbps bandwidth. We study the impact of varying the packet-loss rate, RTT, bandwidth, and CCA and demonstrate that partial order and FEC latency improvements grow as we increase packet loss and RTT, especially with the emerging Bottleneck Bandwidth and Round-Trip propagation time (BBR) congestion control algorithm.
ISSN:1999-5903
DOI:10.3390/fi17070297
Font:ABI/INFORM Global