Improved Dynamic Correction for Seismic Data Processing: Mitigating the Stretch Effect in NMO Correction
Guardado en:
| Publicado en: | Geosciences vol. 15, no. 7 (2025), p. 258-277 |
|---|---|
| Autor principal: | |
| Otros Autores: | , , , , |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Resumen: | Seismic data processing is essential in hydrocarbon exploration, with normal moveout (NMO) correction being a pivotal step in enhancing seismic signal quality. However, conventional NMO correction often suffers from the stretch effect, which distorts seismic reflections and degrades data quality, especially in long-offset data. This study addresses the issue by analyzing synthetic models and proposing a nonhyperbolic stretch-free NMO correction technique. The proposed method significantly improves seismic data quality by preserving up to 90% of the original amplitude, maintaining frequency content stability at 30 Hz, and achieving a high reduction of stretch-related distortions. Compared to conventional NMO, our technique results in clearer seismic gathers, enhanced temporal resolution, and more accurate velocity models. These improvements have substantial implications for high-resolution subsurface imaging and precise reservoir characterization.This work offers a robust and computationally efficient solution to a longstanding limitation in seismic processing, advancing the reliability of exploration in geologically complex environments. |
|---|---|
| ISSN: | 2076-3263 |
| DOI: | 10.3390/geosciences15070258 |
| Fuente: | Publicly Available Content Database |