Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains

Guardado en:
Detalles Bibliográficos
Publicado en:Fractal and Fractional vol. 9, no. 7 (2025), p. 442-464
Autor principal: Moumen Abdelkader
Otros Autores: Thabet Sabri T. M., Albala Hussien, Aldwoah Khaled, Saber Hicham, Hassan, Eltigani I, Alawia, Adam
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189678
003 UK-CbPIL
022 |a 2504-3110 
024 7 |a 10.3390/fractalfract9070442  |2 doi 
035 |a 3233189678 
045 2 |b d20250101  |b d20251231 
100 1 |a Moumen Abdelkader  |u Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; mo.abdelkader@uoh.edu.sa (A.M.); hi.saber@uoh.edu.sa (H.S.) 
245 1 |a Efficient Solution Criteria for a Coupled Fractional Laplacian System on Some Infinite Domains 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article concerns a novel coupled implicit differential system under <inline-formula>φ</inline-formula>–Riemann–Liouville (<inline-formula>RL</inline-formula>) fractional derivatives with <inline-formula>p</inline-formula>-Laplacian operator and multi-point strip boundary conditions on unbounded domains. An applicable Banach space is introduced to define solutions on unbounded domains <inline-formula>[c,∞)</inline-formula>. The explicit iterative solution’s existence and uniqueness (<inline-formula>EaU</inline-formula>) are established by employing the Banach fixed point strategy. The different types of Ulam–Hyers–Rassias (<inline-formula>UHR</inline-formula>) stabilities are investigated. Ultimately, we provide a numerical application of a coupled <inline-formula>φ</inline-formula>-<inline-formula>RL</inline-formula> fractional turbulent flow model to illustrate and test the effectiveness of our outcomes. 
653 |a Boundary conditions 
653 |a Calculus 
653 |a Laplace transforms 
653 |a Banach spaces 
653 |a Investigations 
653 |a Integral equations 
653 |a Operators (mathematics) 
653 |a Theorems 
653 |a Water waves 
653 |a Iterative solution 
700 1 |a Thabet Sabri T. M.  |u Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India 
700 1 |a Albala Hussien  |u Department of Computer Sciences, College of Sciences &amp;amp; Arts, Tanomah, King Khalid University, Abha 61421, Saudi Arabia 
700 1 |a Aldwoah Khaled  |u Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia 
700 1 |a Saber Hicham  |u Department of Mathematics, College of Science, University of Ha’il, Ha’il 55473, Saudi Arabia; mo.abdelkader@uoh.edu.sa (A.M.); hi.saber@uoh.edu.sa (H.S.) 
700 1 |a Hassan, Eltigani I  |u Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia; eiabdalla@imamu.edu.sa 
700 1 |a Alawia, Adam  |u Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia 
773 0 |t Fractal and Fractional  |g vol. 9, no. 7 (2025), p. 442-464 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189678/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3233189678/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189678/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch