A Case Study on Monolith to Microservices Decomposition with Variational Autoencoder-Based Graph Neural Network

Guardat en:
Dades bibliogràfiques
Publicat a:Future Internet vol. 17, no. 7 (2025), p. 303-322
Autor principal: Maharjan Rokin
Altres autors: Korn, Sooksatra, Cerny Tomas, Rajbhandari Yudeep, Shrestha Sakshi
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189715
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17070303  |2 doi 
035 |a 3233189715 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Maharjan Rokin  |u Department of Computer Science, Baylor University, Waco, TX 76798-7141, USA; korn_sooksatra1@baylor.edu (K.S.); yudeep.rajbhandari@gmail.com (Y.R.) 
245 1 |a A Case Study on Monolith to Microservices Decomposition with Variational Autoencoder-Based Graph Neural Network 
260 |b MDPI AG  |c 2025 
513 |a Case Study Journal Article 
520 3 |a Microservice is a popular architecture for developing cloud-native applications. However, decomposing a monolithic application into microservices remains a challenging task. This complexity arises from the need to account for factors such as component dependencies, cohesive clusters, and bounded contexts. To address this challenge, we present an automated approach to decomposing monolithic applications into microservices. Our approach uses static code analysis to generate a dependency graph of the monolithic application. Then, a variational autoencoder (VAE) is used to extract features from the components of a monolithic application. Finally, the C-means algorithm is used to cluster the components into possible microservices. We evaluate our approach using a third-party benchmark comprising both monolithic and microservice implementations. Additionally, we compare its performance against two existing decomposition techniques. The results demonstrate the potential of our method as a practical tool for guiding the transition from monolithic to microservice architectures. 
653 |a Machine learning 
653 |a Software 
653 |a Static code analysis 
653 |a Artificial intelligence 
653 |a Graphs 
653 |a Communication 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Social networks 
653 |a Decomposition 
653 |a Architecture 
653 |a Automation 
653 |a Case studies 
700 1 |a Korn, Sooksatra  |u Department of Computer Science, Baylor University, Waco, TX 76798-7141, USA; korn_sooksatra1@baylor.edu (K.S.); yudeep.rajbhandari@gmail.com (Y.R.) 
700 1 |a Cerny Tomas  |u Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721-0020, USA 
700 1 |a Rajbhandari Yudeep  |u Department of Computer Science, Baylor University, Waco, TX 76798-7141, USA; korn_sooksatra1@baylor.edu (K.S.); yudeep.rajbhandari@gmail.com (Y.R.) 
700 1 |a Shrestha Sakshi  |u Department of Computing, East Tennessee State University, Johnson City, TN 37614-1700, USA; shresthas4@etsu.edu 
773 0 |t Future Internet  |g vol. 17, no. 7 (2025), p. 303-322 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189715/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189715/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189715/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch