CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes

Guardat en:
Dades bibliogràfiques
Publicat a:Geosciences vol. 15, no. 7 (2025), p. 253-278
Autor principal: Xu, Jun
Altres autors: Wang, Fei, Vaughan, Bryce
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233189759
003 UK-CbPIL
022 |a 2076-3263 
024 7 |a 10.3390/geosciences15070253  |2 doi 
035 |a 3233189759 
045 2 |b d20250701  |b d20250731 
084 |a 231468  |2 nlm 
100 1 |a Xu, Jun  |u Department of Mechanical, Environmental, and Civil Engineering, Mayfield College of Engineering, Tarleton State University, Stephenville, TX 76401, USA; bryce.vaughan@go.tarleton.edu 
245 1 |a CFD–DEM Analysis of Internal Soil Erosion Induced by Infiltration into Defective Buried Pipes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Internal soil erosion caused by water infiltration around defective buried pipes poses a significant threat to the long-term stability of underground infrastructures such as pipelines and highway culverts. This study employs a coupled computational fluid dynamics–discrete element method (CFD–DEM) framework to simulate the detachment, transport, and redistribution of soil particles under varying infiltration pressures and pipe defect geometries. Using ANSYS Fluent (CFD) and Rocky (DEM), the simulation resolves both the fluid flow field and granular particle dynamics, capturing erosion cavity formation, void evolution, and soil particle transport in three dimensions. The results reveal that increased infiltration pressure and defect size in the buried pipe significantly accelerate the process of erosion and sinkhole formation, leading to potentially unstable subsurface conditions. Visualization of particle migration, sinkhole development, and soil velocity distributions provides insight into the mechanisms driving localized failure. The findings highlight the importance of considering fluid–particle interactions and defect characteristics in the design and maintenance of buried structures, offering a predictive basis for assessing erosion risk and infrastructure vulnerability. 
653 |a Behavior 
653 |a Infiltration 
653 |a Pipelines 
653 |a Hydrodynamics 
653 |a Defects 
653 |a Soil erosion 
653 |a Fluid dynamics 
653 |a Sinkholes 
653 |a Fluid flow 
653 |a Particle transport 
653 |a Discrete element method 
653 |a Pressure distribution 
653 |a Buried structures 
653 |a Soil particles 
653 |a Simulation 
653 |a Pipes 
653 |a Pipes (defects) 
653 |a Particle size 
653 |a Particle dynamics 
653 |a Particle interactions 
653 |a Erosion processes 
653 |a Water infiltration 
653 |a Laboratories 
653 |a Numerical analysis 
653 |a Measurement techniques 
653 |a Sediment transport 
653 |a Groundwater 
653 |a Computational fluid dynamics 
653 |a Hydraulics 
653 |a Predictive maintenance 
653 |a Buried pipes 
700 1 |a Wang, Fei  |u Richard A. Rula School of Civil and Environmental Engineering, Mississippi State University, Mississippi State, MS 39762, USA; feiwang@cee.msstate.edu 
700 1 |a Vaughan, Bryce  |u Department of Mechanical, Environmental, and Civil Engineering, Mayfield College of Engineering, Tarleton State University, Stephenville, TX 76401, USA; bryce.vaughan@go.tarleton.edu 
773 0 |t Geosciences  |g vol. 15, no. 7 (2025), p. 253-278 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233189759/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233189759/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233189759/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch