Classification Prediction of Jujube Variety Based on Hyperspectral Imaging: A Comparative Study of Intelligent Optimization Algorithms

Guardat en:
Dades bibliogràfiques
Publicat a:Foods vol. 14, no. 14 (2025), p. 2527-2548
Autor principal: Liu Quancheng
Altres autors: Zhou, Jun, Wu Zhaoyi, Ma, Didi, Ma Yuxuan, Fan Shuxiang, Yan, Lei
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3233194942
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14142527  |2 doi 
035 |a 3233194942 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Liu Quancheng  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
245 1 |a Classification Prediction of Jujube Variety Based on Hyperspectral Imaging: A Comparative Study of Intelligent Optimization Algorithms 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Accurate classification of jujube varieties is essential for ensuring their quality and medicinal value. Traditional methods, relying on manual detection, are inefficient and fail to meet the demands of modern production and quality control. This study integrates hyperspectral imaging with intelligent optimization algorithms—Zebra Optimization Algorithm (ZOA), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Grey Wolf Optimization (GWO)—and a Support Vector Machine (SVM) model to classify jujube varieties. First, the Isolation Forest (IF) algorithm was employed to remove outliers from the spectral data. The data were then processed using Baseline correction, Multiplicative Scatter Correction (MSC), and Savitzky-Golay first derivative (SG1st) spectral preprocessing techniques, followed by feature enhancement with the Competitive Adaptive Reweighted Sampling (CARS) algorithm. A comparative analysis of the optimization algorithms in the SVM model revealed that SG1st preprocessing significantly boosted classification accuracy. Among the algorithms, GWO demonstrated the best global search ability and generalization performance, effectively enhancing classification accuracy. The GWO-SVM-SG1st model achieved the highest classification accuracy, with 94.641% on the prediction sets. This study showcases the potential of combining hyperspectral imaging with intelligent optimization algorithms, offering an effective solution for jujube variety classification. 
651 4 |a United States--US 
651 4 |a China 
653 |a Outliers (statistics) 
653 |a Particle swarm optimization 
653 |a Food safety 
653 |a Accuracy 
653 |a Comparative analysis 
653 |a Classification 
653 |a Quality control 
653 |a Algorithms 
653 |a Adaptive sampling 
653 |a Data analysis 
653 |a Comparative studies 
653 |a Preprocessing 
653 |a Genetic algorithms 
653 |a Support vector machines 
653 |a Seeds 
653 |a Light 
653 |a Optimization algorithms 
653 |a Hyperspectral imaging 
653 |a Ziziphus jujuba 
700 1 |a Zhou, Jun  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
700 1 |a Wu Zhaoyi  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
700 1 |a Ma, Didi  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
700 1 |a Ma Yuxuan  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
700 1 |a Fan Shuxiang  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
700 1 |a Yan, Lei  |u School of Technology, Beijing Forestry University, Beijing 100083, China; liuqc@bjfu.edu.cn (Q.L.); wojiaozhoujun198@163.com (J.Z.); zhuixunWZY666@bjfu.edu.cn (Z.W.); Mdd2194155477@bjfu.edu.cn (D.M.); m19213026571@163.com (Y.M.) 
773 0 |t Foods  |g vol. 14, no. 14 (2025), p. 2527-2548 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233194942/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233194942/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233194942/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch