Impact of Machine Learning on Intrusion Detection Systems for the Protection of Critical Infrastructure

Sparad:
Bibliografiska uppgifter
I publikationen:Information vol. 16, no. 7 (2025), p. 515-557
Huvudupphov: Kumar, Avinash
Övriga upphov: Gutierrez, Jairo A
Utgiven:
MDPI AG
Ämnen:
Länkar:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3233222222
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16070515  |2 doi 
035 |a 3233222222 
045 2 |b d20250701  |b d20250731 
084 |a 231474  |2 nlm 
100 1 |a Kumar, Avinash 
245 1 |a Impact of Machine Learning on Intrusion Detection Systems for the Protection of Critical Infrastructure 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In the realm of critical infrastructure protection, robust intrusion detection systems (IDSs) are essential for securing essential services. This paper investigates the efficacy of various machine learning algorithms for anomaly detection within critical infrastructure, using the Secure Water Treatment (SWaT) dataset, a comprehensive collection of time-series data from a water treatment testbed, to experiment upon and analyze the findings. The study evaluates supervised learning algorithms alongside unsupervised learning algorithms. The analysis reveals that supervised learning algorithms exhibit exceptional performance with high accuracy and reliability, making them well-suited for handling the diverse and complex nature of anomalies in critical infrastructure. They demonstrate significant capabilities in capturing spatial and temporal variables. Among the unsupervised approaches, valuable insights into anomaly detection are provided without the necessity for labeled data, although they face challenges with higher rates of false positives and negatives. By outlining the benefits and drawbacks of these machine learning algorithms in relation to critical infrastructure, this research advances the field of cybersecurity. It emphasizes the importance of integrating supervised and unsupervised techniques to enhance the resilience of IDSs, ensuring the timely detection and mitigation of potential threats. The findings offer practical guidance for industry professionals on selecting and deploying effective machine learning algorithms in critical infrastructure environments. 
653 |a Machine learning 
653 |a Accuracy 
653 |a Internet 
653 |a Datasets 
653 |a Infrastructure 
653 |a Intrusion detection systems 
653 |a Public safety 
653 |a National security 
653 |a Electricity distribution 
653 |a Supervised learning 
653 |a Unsupervised learning 
653 |a Water treatment plants 
653 |a Effectiveness 
653 |a Cybersecurity 
653 |a Algorithms 
653 |a Malware 
653 |a Anomalies 
653 |a Water treatment 
653 |a Security personnel 
653 |a Critical infrastructure 
653 |a Financial institutions 
700 1 |a Gutierrez, Jairo A 
773 0 |t Information  |g vol. 16, no. 7 (2025), p. 515-557 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233222222/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233222222/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233222222/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch