MARC

LEADER 00000nab a2200000uu 4500
001 3233223469
003 UK-CbPIL
022 |a 2075-4450 
024 7 |a 10.3390/insects16070690  |2 doi 
035 |a 3233223469 
045 2 |b d20250701  |b d20250731 
084 |a 231475  |2 nlm 
100 1 |a Yin Zongyu  |u Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; y2332856@163.com (Z.Y.); 18376763805@163.com (H.X.); lxx6337460@163.com (J.L.) 
245 1 |a <i>Heortia vitessoides</i> Infests <i>Aquilaria sinensis</i>: A Systematic Review of Climate Drivers, Management Strategies, and Molecular Mechanisms 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Heortia vitessoides Moore (Lepidoptera: Pyralidae), the dominant outbreak defoliator of Aquilaria sinensis (Myrtales: Thymelaeaceae, the agarwood-producing tree), poses a severe threat to the sustainable development of the agarwood industry. Current research has preliminarily revealed its biological traits and gene functions. However, significant gaps persist in integrating climate adaptation mechanisms, control technologies, and host interaction networks across disciplines. This review systematically synthesizes the multidimensional mechanisms underlying H. vitessoides outbreaks through the logical framework of “Fundamental Biology of Outbreaks—Environmental Drivers—Control Strategies—Molecular Regulation—Host Defense.” First, we integrate the biological characteristics of H. vitessoides with its climatic response patterns, elucidating the ecological pathways through which temperature and humidity drive population outbreaks by regulating development duration and host resource availability. Subsequently, we assess the efficacy and limitations of existing control techniques (e.g., pheromone trapping, Beauveria bassiana application), highlighting the critical bottleneck of insufficient mechanistic understanding at the molecular level. Building on this, we delve into the molecular adaptation mechanisms of H. vitessoides. Specifically, detoxification genes (e.g., HvGSTs1) and temperature stress-responsive genes (e.g., HvCAT, HvGP) synergistically enhance stress tolerance, while chemosensory genes mediate mating and host location behaviors. Concurrently, we reveal the host defense strategy of A. sinensis, involving activation of secondary metabolite defenses via the jasmonic acid signaling pathway and emission of volatile organic compounds that attract natural enemies—an “induced resistance–natural enemy collaboration” mechanism. Finally, we propose future research directions: deep integration of gene editing to validate key targets, multi-omics analysis to decipher the host–pest–natural enemy interaction network, and development of climate–gene–population dynamics models. These approaches aim to achieve precision control by bridging molecular mechanisms with environmental regulation. This review not only provides innovative pathways for managing H. vitessoides but also establishes a paradigm for cross-scale research on pests affecting high-value economic forests. 
651 4 |a Australia 
651 4 |a Sichuan Basin 
651 4 |a China 
651 4 |a Southeast Asia 
651 4 |a India 
653 |a Host location 
653 |a Pheromones 
653 |a Genetic modification 
653 |a Resource availability 
653 |a Generations 
653 |a Host plants 
653 |a Volatile organic compounds--VOCs 
653 |a Metabolites 
653 |a Climate adaptation 
653 |a Outbreaks 
653 |a Climate change 
653 |a Population dynamics 
653 |a Temperature tolerance 
653 |a Sustainable development 
653 |a Environmental factors 
653 |a Mating behavior 
653 |a Detoxification 
653 |a Humidity 
653 |a Jasmonic acid 
653 |a Pheromone traps 
653 |a Environmental regulations 
653 |a Genes 
653 |a Environmental effects 
653 |a Organic compounds 
653 |a Molecular modelling 
653 |a Integrated control 
653 |a Chemoreception 
653 |a Adaptation 
653 |a Temperature 
653 |a Pests 
653 |a Climate models 
653 |a Research & development--R&D 
653 |a Pest outbreaks 
653 |a Natural enemies 
653 |a Adults 
653 |a Signal transduction 
653 |a Dry season 
653 |a Aquilaria sinensis 
653 |a Heortia vitessoides 
653 |a Environmental 
700 1 |a Chen, Yingying  |u Guangxi Key Laboratory of Special Non-Wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Guangxi Forestry Research Institute, Nanning 530002, China; yychen2014@126.com (Y.C.); lixiaofeicaf@163.com (X.L.); treasurelii@163.com (B.L.); yongjin_z@126.com (Y.Z.) 
700 1 |a Xue Huanrong  |u Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; y2332856@163.com (Z.Y.); 18376763805@163.com (H.X.); lxx6337460@163.com (J.L.) 
700 1 |a Li, Xiaofei  |u Guangxi Key Laboratory of Special Non-Wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Guangxi Forestry Research Institute, Nanning 530002, China; yychen2014@126.com (Y.C.); lixiaofeicaf@163.com (X.L.); treasurelii@163.com (B.L.); yongjin_z@126.com (Y.Z.) 
700 1 |a Li Baocai  |u Guangxi Key Laboratory of Special Non-Wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Guangxi Forestry Research Institute, Nanning 530002, China; yychen2014@126.com (Y.C.); lixiaofeicaf@163.com (X.L.); treasurelii@163.com (B.L.); yongjin_z@126.com (Y.Z.) 
700 1 |a Liang Jiaming  |u Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; y2332856@163.com (Z.Y.); 18376763805@163.com (H.X.); lxx6337460@163.com (J.L.) 
700 1 |a Zhu, Yongjin  |u Guangxi Key Laboratory of Special Non-Wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Guangxi Forestry Research Institute, Nanning 530002, China; yychen2014@126.com (Y.C.); lixiaofeicaf@163.com (X.L.); treasurelii@163.com (B.L.); yongjin_z@126.com (Y.Z.) 
700 1 |a Long Keyu  |u Beiliu Industrial Technology Research and Development Center, Yulin 537400, China; blgxcg@163.com (K.L.); blskjj@163.com (J.Y.); blqbs6221636@163.com (J.P.) 
700 1 |a Yang, Jinming  |u Beiliu Industrial Technology Research and Development Center, Yulin 537400, China; blgxcg@163.com (K.L.); blskjj@163.com (J.Y.); blqbs6221636@163.com (J.P.) 
700 1 |a Jiao, Pang  |u Beiliu Industrial Technology Research and Development Center, Yulin 537400, China; blgxcg@163.com (K.L.); blskjj@163.com (J.Y.); blqbs6221636@163.com (J.P.) 
700 1 |a Li Kaixiang  |u Guangxi Key Laboratory of Special Non-Wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Guangxi Forestry Research Institute, Nanning 530002, China; yychen2014@126.com (Y.C.); lixiaofeicaf@163.com (X.L.); treasurelii@163.com (B.L.); yongjin_z@126.com (Y.Z.) 
700 1 |a Ye Shaoming  |u Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China; y2332856@163.com (Z.Y.); 18376763805@163.com (H.X.); lxx6337460@163.com (J.L.) 
773 0 |t Insects  |g vol. 16, no. 7 (2025), p. 690-714 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3233223469/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3233223469/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3233223469/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch